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Abstract—In the real-time systems community, many studies
have addressed how to efficiently utilize a multiprocessor platform
so as to accommodate as many periodic/sporadic real-time tasks
as possible without violating any timing constraints. The schedul-
ing theory has sufficiently matured for a set of implicit-deadline
tasks (the relative deadline equal to the period), yielding a class
of optimal scheduling algorithms. However, the same does not
hold for a set of constrained-deadline tasks (the relative deadline
no larger than the period) in that those task sets have been fully
covered by neither existing implicit-deadline optimal scheduling
algorithms nor heuristic scheduling algorithms.

In this paper, we propose a scheduling framework that
not only takes advantage of both existing implicit-deadline
optimal and heuristic algorithms, but also surpasses both in
finding schedulable constrained-deadline task sets. The proposed
framework logically divides a given task set into the higher-
and lower-priority classes and schedules the classes using an
implicit-deadline optimal algorithm and a heuristic algorithm,
respectively. Then, while the proposed framework guarantees
schedulability of tasks in the higher-priority class by the target
implicit-deadline optimal algorithm, we need to address the
following technical issues for enabling tasks in the lower-priority
class to efficiently reclaim remaining processor capacity while
guaranteeing their schedulability: (i) division of a given task
set into the two classes, (ii) selection/development of scheduling
algorithms for the two classes, and (iii) development of a
schedulability test for the framework with given (i) and (ii). We
present a general case showing how to address (i)–(iii), and then
a specific case addressing how to further improve schedulability
by utilizing characteristics of the specific case. Our simulation
results demonstrate that the proposed framework outperforms
all existing scheduling algorithms in covering schedulable task
sets; in particular, if we focus on task sets with the system density
larger than the number of processors, the framework finds up to
446.3% additional schedulable task sets, compared to task sets
covered by at least one of existing scheduling algorithms.

I. INTRODUCTION

The real-time systems community has sought answers
of the following fundamental questions regarding a set of
periodic/sporadic real-time tasks τi ∈ τ , each of which is
specified by the minimum inter-arrival time or period (Ti),
the worst-case execution time (Ci) and the relative deadline
(Di). Can we develop a scheduling algorithm that does not
yield any single job deadline miss for all possible legal job
arrival patterns invoked by a task set τ? If so, how can we
guarantee there is no job deadline miss under the scheduling
algorithm?

On a uniprocessor platform, the two questions have been
fully addressed. EDF (Earliest Deadline First) [1] has been
proven optimal for not only a task set consisting of implicit-
deadline tasks (Di = Ti) but also that of constrained-deadline

tasks (Di ≤ Ti). Also, EDF has exact (necessary and suffi-
cient) schedulability tests for both implicit- and constrained-
deadline task sets [1, 2], e.g.,

∑
τi∈τ Ci/Ti ≤ 1 for a set of

implicit-deadline tasks τ .

When it comes to a multiprocessor platform consisting of
m (≥ 2) identical processors, a class of optimal scheduling
algorithms have achieved 100% utilization for a set of implicit-
deadline tasks, meaning a task set τ is schedulable if and
only if

∑
τi∈τ Ci/Ti ≤ m holds. Starting from P-Fair [3],

various optimal scheduling algorithms have been developed in
order to reduce the number of preemptions/migrations and/or
accommodate new environments (e.g., supporting sporadic
releases) such as ER-Fair, LLREF, EKG, DP-Wrap, RUN,
U-EDF, QPS [4–10]. While most of the implicit-deadline
optimal scheduling algorithms can cover constrained-deadline
task sets whose system density is no larger than the number of
processors m (i.e.,

∑
τi∈τ Ci/Di ≤ m), few of them guarantee

the schedulability of the other constrained-deadline task sets
(i.e.,

∑
τi∈τ Ci/Di > m).

On the other hand, there exist heuristic scheduling algo-
rithms that significantly improve existing simple scheduling
algorithms EDF and FP (Fixed Priority) [1], such as EDZL,
FPZL, LLF, EDF-CF, SPDF, EQDF, EQDZL [11–17]. Due to
the difficulty of developing tight schedulability tests, all exist-
ing schedulability tests for those heuristic algorithms (includ-
ing even EDF and FP) are only sufficient. Therefore, empirical
results demonstrate that those scheduling algorithms with their
best schedulability tests give the schedulability guarantee to
only some of task sets belonging to

∑
τi∈τ Ci/Di ≤ m and a

few of task sets belonging to
∑

τi∈τ Ci/Di > m, as shown in
Fig. 1.

In this paper, we aim at not only taking advantage of both
existing implicit-deadline optimal scheduling algorithms (cov-
ering all task sets satisfying

∑
τi∈τ Ci/Di ≤ m) and heuristic

scheduling algorithms (covering a few task sets satisfying∑
τi∈τ Ci/Di > m), but also outperforming both and finding

additional task sets that have not been proven schedulable by
any existing scheduling algorithm. To this end, we propose
a two-level scheduling framework, which logically divides a
given task set τ into the higher- and lower-priority classes τHI

and τLO, and schedules them by an implicit-deadline optimal
algorithm and a heuristic algorithm, respectively. Then, while
the proposed framework guarantees schedulability of tasks in
τHI as long as

∑
τi∈τHI Ci/Di ≤ m holds, we need to address

the following issues for enabling tasks in τLO to efficiently
reclaim remaining processor capacity while guaranteeing their
schedulability.

I1. How to divide a task set τ into τHI and τLO?
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δ τ

Fig. 1. The number of task sets deemed schedulable by schedulability tests of
the proposed scheduling framework (Ours) and existing well-known heuristic
scheduling algorithms (FPZL, SPDF, LLF and EDZL) according to the system
density δsum(τ) =

∑
τi∈τ Ci/Di for m = 8; here, FF-DBF means the

total number of generated task sets, and detailed simulation settings will be
explained in Section VI.

I2. How to determine/develop scheduling algorithms for
τHI and τLO?

I3. How to guarantee schedulability of tasks in τLO, under
the given task set division and scheduling algorithms?

To address I1–I3, we focus on the framework employing
any implicit-deadline optimal scheduling algorithm and FP for
τHI and τLO, respectively. We first develop a schedulability
test for the framework for given task priority/class assignment
for τLO. We then present an Optimal task Priority/Class
Assignment (OPCA) policy under the schedulability test. In
spite of success in addressing I1–I3, the framework with the
current settings cannot take account of the target scheduling
algorithm for τHI when we decide the scheduling algorithm for
τLO and develop its schedulability test, entailing the following
issue to further improve schedulability.

I4. How to address I1–I3 by utilizing the characteristics
of a target scheduling algorithm for τHI?

As to I4, we target fluid scheduling [18] and fluid FP
scheduling (that is fluid scheduling with task-level fixed prior-
ity, to be explained in Section V) for τHI and τLO, respectively,
and allow each task to be split into both τHI and τLO. While
fluid (FP) scheduling as it is cannot work in an actual system
because of employing a fractional processor, we can easily
construct a feasible schedule on an actual system from its
schedule, e.g., using DP-Wrap [7] that employs McNaughton’s
wrap-around rule [19]. For given execution rate assignment
for every task splitting to τHI and τLO and task priority
assignment for τLO, we develop a new schedulability test,
which tightly calculates other tasks’ interference by utilizing
characteristics of fluid (FP) scheduling. We then develop a
sub-optimal execution rate and task priority assignment policy
by deriving necessary conditions for optimal execution rate
assignment and applying a part of OPCA, yielding significant
schedulability improvement.

To demonstrate the effectiveness of our framework in cov-
ering constrained-deadline task sets, we compare our frame-
work to existing scheduling algorithms as shown in Fig. 1. Our
simulation results demonstrate that the proposed framework
not only covers all task sets satisfying

∑
τi∈τ Ci/Di ≤ m

(which is comparable to implicit-deadline optimal scheduling

algorithms), but also finds a number of additional task sets
satisfying

∑
τi∈τ Ci/Di > m, which have not been proven

schedulable by any existing scheduling algorithms. In partic-
ular, if we focus on task sets satisfying

∑
τi∈τ Ci/Di > m,

the framework finds up to 446.3% additional schedulable task
sets, compared to task sets covered by at least one of existing
scheduling algorithms.

In summary, this paper makes the following contributions.

• We propose a scheduling framework for constrained-
deadline task sets, which not only generalizes existing
implicit-deadline optimal scheduling algorithms, but
also efficiently reclaims remaining processor capacity.

• We develop a schedulability test and OPCA that can
be used for the framework employing any implicit-
deadline optimal scheduling algorithm and FP.

• We incorporate fluid scheduling into the framework,
and develop a tight schedulability test and an execu-
tion rate and task priority assignment policy special-
ized for fluid scheduling, yielding significant schedu-
lability improvement.

• We demonstrate the effectiveness of the framework
in finding a number of additional schedulable task
sets, which have not been proven schedulable by any
existing scheduling algorithm.

The rest of this paper is organized as follows. Section II
presents our system model with notations and assumptions.
Section III designs the proposed scheduling framework. Sec-
tion IV presents the framework employing any implicit-
deadline optimal scheduling algorithm and FP. Section V
presents the framework with fluid scheduling. Section VI eval-
uates the schedulability performance of the proposed frame-
work, and Section VII concludes this paper with discussion.

II. SYSTEM MODEL, NOTATIONS, AND ASSUMPTIONS

We consider a sporadic/periodic task model [20], where a
task τi ∈ τ is specified by the minimum inter-arrival time or
period (Ti), the worst-case execution time (Ci) and the relative
deadline (Di). A task τi is assumed to have a constrained
deadline, i.e., Ci ≤ Di ≤ Ti, and invokes potentially infinite
jobs, each of which should finish its execution within Di time
from its release. We consider a legal job release pattern for
every task τi ∈ τ , implying a time interval between release
times of two consecutive jobs of a task τi is at least Ti.
We assume a single job cannot be executed in parallel. We
call a job active if the job has remaining execution. We
let δsum(τ) denote the system density of τ , calculated by
δsum(τ) =

∑
τi∈τ Ci/Di. Also, let n denote the number of

tasks in τ .

We target a platform with m (≥ 2) identical processors. We
consider preemptive, global scheduling algorithms, in which a
currently-executing lower-priority job can be preempted by a
higher-priority job at any time, and a job can be executed in
any processor and allowed to migrate from one processor to
another.

A task set τ is referred to as schedulable by a scheduling
algorithm on a platform, if there is no job deadline miss for
all possible legal job release patterns invoked by τ . This paper
aims at judging whether a task set τ is schedulable, for given

332



information of task parameters of τ , a target scheduling algo-
rithm, and a target platform. For example, we can guarantee the
schedulability of a task set τ on a m-processor platform by a
class of implicit-deadline optimal scheduling algorithms [4–
9], if the task set satisfies δsum(τ) ≤ m. Note that a
target scheduling algorithm itself may need limited online
information, e.g., DP-Wrap [7] requires online information of
the upcoming time instant at which any job has its deadline or
release time; even in this case, we can check the schedulability
of a task set only with task parameters, i.e., δsum(τ) ≤ m.
We also note that, by the definition of “schedulability”, it is
intractable to check schedulability by a method that requires
information of all future job release times for judging whether
there is no job deadline miss or not, e.g., [21].

III. DESIGN OF A SCHEDULING FRAMEWORK FOR

CONSTRAINED-DEADLINE TASK SETS

In this section, we propose a new scheduling framework
for constrained-deadline task sets, which logically divides a
given task set τ into the higher- and lower-priority classes τHI

and τLO. The framework employs an existing implicit-deadline
optimal scheduling algorithm for τHI, while it enables tasks in
τLO to reclaim processor capacity by employing/developing a
heuristic scheduling algorithm.

Algo. 1 describes the proposed two-level scheduling frame-
work TL(τ ,AlgoA,AlgoB), where AlgoA and AlgoB denote the
algorithms that schedule tasks in τHI and τLO, respectively.
TL(τ ,AlgoA,AlgoB) divides the given task set τ into τHI and
τLO = τ \ τHI, such that δsum(τ

HI) ≤ m holds (Line 1). Here,
we consider not only the division where a task belongs to
either τHI or τLO, but also the division where a portion of a
task belongs to τHI and the remaining portion of the same task
belongs to τLO. AlgoA and AlgoB determine applicability of
such two different division types; Section IV and V will show
how we apply the former and the latter, respectively.

Then, for each scheduling interval [ta, tb), tasks in τHI

are scheduled by AlgoA with higher priorities than all tasks
in τLO that are scheduled by AlgoB (Lines 2–5). Here, each
scheduling interval depends on the target scheduling algorithm;
for example, each scheduling interval in DP-Wrap [7] is set
to an interval between any two consecutive time instants at
which any job is released or has its deadline. When it comes to
qualification of AlgoA and AlgoB, AlgoA can be any implicit-
deadline optimal scheduling algorithm as long as it can handle
constrained-deadline tasks.1 On the other hand, AlgoB can be
any scheduling algorithm.

By the principle of the two-level scheduling and the qual-
ification of AlgoA, we do not need to care for schedulability
of tasks in τHI, recorded as follows.

Lemma 1: Suppose that we apply the two-level scheduling
framework TL(τ ,AlgoA,AlgoB) in Algo. 1, where AlgoA is
any implicit-deadline optimal scheduling algorithm (as long
as it can handle constrained-deadline tasks). Then, every job
invoked by tasks in τHI cannot miss its deadline.

Proof: By the common feasibility condition of any
implicit-deadline optimal scheduling algorithm, a task set τ is
schedulable by the algorithm if δsum(τ) ≤ m holds. According

1While most of implicit-deadline optimal scheduling algorithms can handle
constrained-deadline tasks, some of them cannot, e.g., RUN [10].

Algorithm 1 Two-level scheduling framework: TL(τ ,AlgoA,AlgoB)

1: Determine τHI and τ LO satisfying τHI ∪ τ LO = τ , τHI ∩ τ LO = ∅,
and δsum(τHI) ≤ m;

2: for each scheduling interval [ta, tb) do
3: Given processor capacity m · (tb− ta), determine the schedule

of jobs of tasks in τHI in [ta, tb) by AlgoA;
4: Given remaining processor capacity consumed by tasks in τHI,

determine the schedule of jobs of tasks in τ LO in [ta, tb) by
AlgoB;

5: end for

to the principle of TL(τ ,AlgoA,AlgoB), δsum(τ
HI) ≤ m holds,

and tasks in τHI have a higher priority than all tasks in
τLO. Thus, τHI is schedulable by the proposed scheduling
framework.

Differently from tasks in τHI, the framework itself does
not guarantee the schedulablity of tasks in τLO. Therefore, in
order to allow tasks in τLO to efficiently reclaim remaining
processor capacity while guaranteeing their schedulability, we
need to address I1–I3, to be presented in the next section.

IV. THE FRAMEWORK EMPLOYING ANY

IMPLICIT-DEADLINE OPTIMAL SCHEDULING AND FP

Among many choices of scheduling algorithms for the pro-
posed framework in Algo. 1, this section considers TL(τ , Any,
FP). That is, τHI is scheduled by any implicit-deadline optimal
scheduling algorithm (as long as it can handle constrained-
deadline tasks), while τLO is scheduled by FP (Fixed Prior-
ity) [1] with given task priority assignment (addressing I2).
The remaining issues are (i) how to guarantee schedulability
of tasks in τLO under given task priority/class assignment
(addressing I3), and (ii) how to find the optimal task prior-
ity/class assignment under (i) (addressing I1), both of which
are explained now.

We now develop a schedulability test for a task in τLO

under TL(τ , Any, FP). Here, we assume every task τi has its
own priority Pi; the smaller Pi, the higher the priority.

Let Wi(�) denote the upper-bound of the amount of exe-
cution of jobs of τi in an interval of length � (assuming a legal
job release pattern and no job deadline miss of τi) under any
scheduling algorithm [22]. Fig. 2 illustrates the scenario that
results in Wi(�). Here, the first job of τi starts its execution at
the beginning of the interval of interest of length � and finishes
the execution at its absolute deadline, which fully executes for
Ci; thereafter, following jobs of τi are scheduled as soon as
possible. By considering the jobs fully executing for Ci and
the last job executing for at most Ci, we can calculate Wi(�)
as follows [22]:

Wi(�) =

⌊
�+Di − Ci

Ti

⌋
· Ci+

min

(
Ci, �+Di − Ci −

⌊
�+Di − Ci

Ti

⌋
· Ti

)
. (1)

Now, we would like to analyze whether a job of τk
of interest (denoted by Jk) finishes its execution within its
deadline. Let t and t + Dk denote the release time and
deadline of Jk. We focus on a set of intervals (not necessarily
continuous) over [t, t+Dk) in which Jk is not executed due
to execution of jobs of other tasks on all m processors. Let
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ℓ

Fig. 2. Scenario where the amount of execution of jobs of a task τi is
maximized in a given interval of length � under any scheduling algorithm

Γ denote a subset of the intervals, which limits its cumulative
length to Dk − Ck. That is, if the cumulative length of a set
of the intervals is at most Dk − Ck, Γ denotes a set of all
the intervals; otherwise, Γ represents a subset of the intervals,
whose cumulative length is exactly Dk −Ck. Then, for Jk to
execute for Ck, we need to calculate the amount of execution
of jobs of tasks whose priority is higher than τk in [t, t+Dk),
which can be classified into the following two types.

Enp: Execution of tasks whose priority is higher than τk in
Γ, and

Ep: Execution of tasks whose priority is higher than τk in
[t, t+Dk) \ Γ,

Fig. 3 describes how the interval of [t, t + Dk) is separated
by the notion of Γ with a scenario in which Jk finishes its
execution exactly at t + Dk. As seen in Fig. 3, Jk cannot
be executed in the interval of Γ due to the execution of
higher-priority jobs (the execution in the dotted rectangles
representing Enp), but the job fully executes in [t, t+Dk)\Γ
in conjunction with other jobs.

To guarantee schedulability of Jk, we use two condi-
tions, whose main idea is the same as the existing deadline
analysis [23]. First, the amount of execution that potentially
contributes to Enp should not be larger than m·(Dk−Ck); oth-
erwise, the job of τk may not execute for Ck in [t, t+Dk)\Γ.
Second, the number of tasks that potentially contribute to Ep
at any given time instant of [t, t+Dk) \Γ is at most m− 1;
otherwise, if such tasks’ jobs execute at the same time, there
exists no room for Jk to execute for Ck in [t, t+Dk)\Γ.

Then, the challenging issue is how to upper-bound the
amount of execution that potentially contribute to Enp and
the number of tasks that potentially have Ep offline. To this
end, we consider the worst-case scenario where execution of
each task τi is performed as much as possible in [t, t+Dk),
and it potentially contributes to Enp (i.e., executes in Γ) as
much as possible. We use Wi(Dk) since it upper-bounds the
amount of execution of τi (in either τHI or τLO) within any
interval of length Dk regardless of which scheduling algorithm
is used (as well as which task/job priority is assigned) by the
definition of Wi(�). Also, considering Γ’s interval length is at
most Dk−Ck by the definition of Γ, we can upper-bound the
amount of execution of τi in Γ by min(Wi(Dk), Dk − Ck).
By the definition of Γ, Jk never miss its deadline if the length
of Γ is less than Dk−Ck since this implies that the length of
interval that Jk’s execution is hindered by higher-priority jobs
is less than Dk−Ck. In this case, since the schedulability of Jk
is already guaranteed, we do not need to count the number of
tasks that contributes to Ep. Therefore, considering we assume
that τi executes in Γ as much as possible and the length of Γ
is exactly Dk −Ck, only task that holds Wi(Dk) > Dk −Ck

can contribute to Ep under our assumption.

Based on the above approach, the following lemma can

��

Г

Fig. 3. Scenario where the cumulative length of Γ is equal to Dk−Ck , and
thus the amount of execution that contribute to Enp is equal to m ·(Dk−Ck)

guarantee the schedulability of τ under TL(τ , Any, FP).

Lemma 2: For given τHI and τLO satisfying τHI∪ τLO = τ
and τHI ∩ τLO = ∅, suppose that δsum(τ

HI) ≤ m holds, and
every τk ∈ τLO satisfies the following two conditions Eqs. (2)
and (3). Then, a task set τ is schedulable by TL(τ , Any, FP).∑

τi∈τLO|Pi<Pk

min
(
Wi(Dk), Dk − Ck

)
+

∑
τi∈τHI

min
(
Wi(Dk), Dk − Ck

) ≤ m · (Dk − Ck), (2)

∑
τi∈τLO|Pi<Pk & Wi(Dk)>Dk−Ck

1 +

∑
τi∈τHI|Wi(Dk)>Dk−Ck

1 ≤ m− 1. (3)

Proof: Every task τi in τHI under TL(τ , Any, FP) does
not miss its deadline if δsum(τ

HI) ≤ m holds by Lemma 1.
Then, the remaining step is to prove that every task τk in τLO

does not miss its deadline if Eqs. (2) and (3) hold.

Focusing on [t, t + Dk] for the job of interest of Jk, we
show that Jk is schedulable in the following two cases.

(Case i) LHS<RHS of Eq. (2) and LHS≤RHS of Eq. (3)
hold: Suppose that Jk is not schedulable in this case. By the
supposition, the length of Γ should be Dk − Ck; otherwise
Jk is schedulable by the definition of Γ, which contradicts
the supposition. Since Wi(Dk) upper-bounds the amount of
execution of τi in any interval of length Dk regardless of τi’
class and priority, the LHS of Eq. (2) implies an upper-bound
of the amount of execution of tasks each of whose priority is
higher than τk in Γ. Considering m higher-priority jobs are
needed for Jk not to execute at a time instant, LHS<RHS of
Eq. (2) implies that the length of Γ is less than Dk − Ck,
which means Jk never miss its deadline; thus, this contradicts
the supposition.

Note that satisfying LHS<RHS of Eq. (2) implies satisfy-
ing Eq. (3). This is because, violating Eq. (3) implies that there
are at least m tasks that hold Wi(Dk) > Dk−Ck; this always
yields LHS≥RHS of Eq. (2), which contradicts LHS<RHS of
Eq. (2).

(Case ii) LHS=RHS of Eq. (2) and LHS≤RHS of Eq. (3)
hold: Suppose that Jk is not schedulable in this case. With the
same reasoning as Case i, LHS=RHS of Eq. (2) implies that
the length of Γ is exactly Dk−Ck. Therefore, satisfying Eq. (2)
is insufficient to judge the schedulability of Jk. If Eq.(3) holds
and the length of Γ is exactly Dk − Ck, there are at most
m − 1 tasks each of whose priority is higher than τk and
whose execution is performed in [t, t + Dk] \ Γ (as well as
in Γ). Since m jobs are needed for Jk not to execute in an
interval, Jk can always fully execute in [t, t+Dk] \ Γ. Thus,

334



Algorithm 2 Optimal task priority/class assignment (OPCA) for
TL(τ , Any, FP)

1: For every τi ∈ τ , Pi ← −1;
2: for P from n to 1 decreasing by 1 do
3: if δsum({τi ∈ τ |Pi = −1}) ≤ m then
4: Set τHI and τ LO to {τi ∈ τ |Pi = −1} and {τi ∈ τ |Pi �=

−1}, respectively;
5: Return Schedulable;
6: end if
7: for τk ∈ τ |Pk = −1 do
8: if τk satisfies Eqs. (2) and (3) in Lemma 2 with Pk = P

then
9: Pk ← P ;

10: Go to Step 14;
11: end if
12: end for
13: Return Unschedulable;
14: end for

if LHS=RHS of Eq. (2) and LHS≤RHS of Eq. (3) hold, Jk
does not miss its deadline, which contradicts the supposition.

Then, Algo. 2 presents an Optimal task Priority/Class As-
signment (OPCA) policy, which determines whether every task
in τ belongs to τHI or τLO and assigns a task priority to every
task in τLO so as to make τ schedulable by Lemma 2 (if such
priority/class assignment exists). To this end, the algorithm
selects tasks which belong to τLO as well as determines their
priorities from the lowest; then, the remaining tasks whose
priority is unassigned belong to τHI. As an initial step, the
highest priority (expressed by −1) is temporarily assigned to
every task τi ∈ τ (Line 1). Then, we repeat to assign the
priorities from the lowest (i.e., P = n) to the highest (i.e.,
P = 1). For each assignment, we test whether there exists
a task τk that passes Eqs. (2) and (3) in Lemma 2 with the
priority P assuming all unassigned tasks have a higher priority
than τk; if there exists at least one task τk that passes the
conditions, P is assigned to τk, i.e., Pk ← P (Lines 7–12).
On the other hand, if there is no task to which we can assign
P during each repetition, τ is deemed unschedulable (Line
13). Before each assignment, we test whether all remaining
tasks with Pi = −1 can be included in τHI; if so, τ is deemed
schedulable (Lines 3–6).

Algo. 2 is similar to OPA (Optimal task Priority Assign-
ment) for FP with deadline analysis [24]. The main differ-
ence is that we do not need to assign the priority to every
task; once a set of tasks whose priority is unassigned (i.e.,
τ ′ = {τi ∈ τ |Pi = −1}) satisfies δsum(τ

′) ≤ m, we can
set τHI to τ ′. This is because we do not need to care for the
schedulability of tasks in τHI by virtue of Lemma 1. We now
prove the optimality of OPCA in Algo. 2 in the following
lemma.

Lemma 3: Suppose that τ is scheduled by TL(τ , Any, FP).
If OPCA in Algo. 2 deems τ unschedulable, there exists no
task priority/class assignment such that Lemma 2 deems τ
schedulable.

Proof: We prove this lemma by using two important
properties of Lemma 2: (i) the schedulability of a higher-
priority task τk in τLO is not affected by any lower-priority
task; and (ii) the schedulability of a lower-priority task τk in
τLO is not affected by the priority ordering of its higher-priority

tasks. (i) trivially holds since every τk ∈ τLO is scheduled by
FP scheduling under TL(τ , Any, FP). (ii) also holds since
Wi(Dk) of τi ∈ (τHI ∪ τLO|Pi < Pk) is the fixed value
regardless of which priority and class are assigned to τi by
the definition of Wi(�); thus, the LHS of Eqs. (2) and (3)
for a given τk are the fixed values regardless of the priority
ordering of higher-priority tasks of τk.

Then, suppose that OPCA in Algo. 2 succeeds to assign
task priorities up to n− x+ 1 (or no task priority assigned if
x = 0) but fails to assign the task priority of n− x (x >= 0),
while there exists another priority assignment policy OPCA2
that succeeds to assign task priorities up to n − x. We show
such supposition results in contradiction for two cases: (Case
1) a set of tasks each whose priority is from n to n−x+1 by
OPCA is the same as that by OPCA2, and (Case 2) otherwise.

(Case 1) By (i) and (ii), to successfully assign the task
priority of n − x to a task by OPCA2 implies that it is also
possible to do that by OPCA since the schedulability of the
task whose priority is n − x is not affected by lower-priority
tasks and the priority ordering of remaining higher-priority
tasks whose priorities are not assigned yet, which contradicts
the supposition.

(Case 2) Let τj denote one of tasks whose priority is from
n to n−x+1 by OPCA2 but whose priority is not assigned by
OPCA (if there are many choices of τj , we select the lowest-
priority task assigned by OPCA2). Then, if we compare a set
of higher-priority tasks of τj by OPCA2 and that by OPCA,
the former subsumes the latter. By (i) and (ii), this implies
that OPCA can assign a priority to τj , which contradicts the
supposition.

By Cases 1 and 2, the lemma holds.

Due to the principle of the proposed framework and Lines
3–6 in Algo. 2, TL(τ , Any, FP) with OPCA in Algo. 2
dominates any implicit-deadline optimal scheduling algorithm,
recorded in the following lemma.

Lemma 4: A task set deemed schedulable by the common
feasibility condition of any implicit-deadline optimal schedul-
ing is also schedulable by TL(τ , Any, FP) with OPCA in
Algo. 2.

Proof: While the common feasibility condition of any
implicit-deadline optimal scheduling is δsum(τ) ≤ m, Lines
3–6 in Algo. 2 assigns a set of tasks satisfying δsum(τ) ≤ m
to τHI. Since all tasks in τHI have a higher priority than tasks
in τLO, the lemma holds.

Although Algo. 2 yields not only an optimal task prior-
ity/class assignment for TL(τ , Any, FP) under Lemma 2 but
also a dominance relation over any implicit-deadline optimal
scheduling, we still cannot fully utilize the proposed frame-
work in Algo. 1 because of the following three reasons. First,
the current schedulability test can be applied to any implicit-
deadline optimal scheduling algorithm for τHI, meaning that
it can be improved if we develop a new schedulability test
specialized for the target scheduling algorithm. Second, FP is
probably not the best scheduling algorithm that enables tasks
in τLO to effectively reclaim remaining processor capacity
in conjunction with a target scheduling algorithm for τHI.
Third, TL(τ , Any, FP) cannot exploit the full capability of
accommodating tasks in τHI, because it is usually impossible
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to make τHI satisfy exactly δsum(τ
HI) = m. In the next section,

we will address the issues by employing fluid scheduling for
τHI.

V. THE FRAMEWORK WITH FLUID SCHEDULING

In this section, we target fluid scheduling, and significantly
improve schedulability of the proposed framework by address-
ing I4. To this end, we first recapitulate DP-Wrap to show how
to translate the schedule generated by fluid-scheduling into a
schedule feasible on an actual system. Then, we propose TL(τ ,
Fluid, Fluid-FP) and its wrapping algorithm, which employ
fluid scheduling for τHI and allow a single task to split into τLO

and τHI. We next develop a tight schedulability test specialized
for the framework with fluid scheduling. We derive necessary
conditions for optimal execution rate assignment of each task,
and present a final sub-optimal execution rate and task priority
assignment policy that utilizes the necessary conditions and
OPCA developed in Section IV.

A. Recapitulation: fluid scheduling with DP-Wrap

Before we adopt fluid scheduling as a scheduling algorithm
for τHI, we review how fluid scheduling works in conjunction
with DP-Wrap. Fluid scheduling executes each job on a
fractional processor at all time instants [18]. We consider fluid
scheduling such that an active job of τi executes with Ci/Di

rate. While fluid scheduling as it is cannot operate in an actual
system because it needs infinitesimal quantum length, we can
easily translate the schedule generated by fluid scheduling, into
the feasible schedule on an actual system using DP-Wrap [7]
that employs McNaughton’s wrap-around rule [19].

DP-Wrap partitions an interval of interest into multiple
intervals, such that there does not exist any job release and job
deadline in the middle of each interval. Let [tj , tj+1) denote
the jth partitioned interval. Then, every active job of τi in
[tj , tj+1) under fluid scheduling executes with Ci/Di rate,
yielding Ci/Di ·(tj+1−tj) amount of execution in the interval.
To avoid a job’s execution on more than one processor, DP-
Wrap utilizes McNaughton’s wrap-around rule [19] as shown
in the following example.

Example 1: Consider a task set τ consisting of three tasks
that is scheduled by TL(τ , Any, FP) on a two-processor
platform: τ1(T1=10, C1=2, D1=6), τ2(12, 3, 5), τ3(12, 3, 5);
all tasks invoke their jobs periodically from t=0. Under fluid
scheduling on a two-processor platform, τ1 executes in [0, 6)
with C1/D1=1/3 rate, and τ2 and τ3 execute in [0, 5) with
C2/D2=3/5 rate, as shown in Fig. 4(a). DP-Wrap partitions
an interval [0, 6) into [0, 5) and [5, 6) because there is a job
deadline at t = 5. In [0, 5), τ1 has 1/3·5=5/3 amount of
execution, while τ2 and τ3 have 3/5·5=3 amount of execution
under fluid scheduling; therefore, τ1 and τ2 occupy the first
processor in [0, 5/3) and [5/3, 14/3), while τ3 occupies the
first processor in [14/3, 5) and the second processor in [0, 8/3)
under DP-Wrap, as shown in Fig. 4(b). In [5, 6), τ1 solely
has its execution amount to 1/3·1=1/3, occupying the first
processor in [5, 16/3).

B. TL(τ , Fluid, Fluid-FP) and TL(τ , Fluid, Fluid-FP)-Wrap

We now introduce our scheduling algorithm TL(τ , Fluid,
Fluid-FP), in which each task τi(Ti, Ci, Di) ∈ τ is split into
two subtasks which belong to τHI and τLO as follows.

(a) Fluid scheduling (b) DP-Wrap

(c) TL(τ , Fluid, Fluid-FP) (d) TL(τ , Fluid, Fluid-FP)-Wrap

Fig. 4. Schedules for Example 1 by fluid scheduling and DP-Wrap, and those
for Example 2 by TL(τ , Fluid, Fluid-FP) and TL(τ , Fluid, Fluid-FP)-Wrap

• τHI
i (Ti, C

HI
i , Di, R

HI
i ) ∈ τHI, and

• τLO
i (Ti, C

LO
i , Di, R

LO
i , P LO

i ) ∈ τLO,

which should satisfy the following constraints:

C1. CHI
i + CLO

i = Ci,

C2. RHI
i = CHI

i /Di,

C3. CLO
i /Di ≤ RLO

i ≤ 1.0−RHI
i , and

C4. δsum(τ
HI) =

∑
τi∈τ C

HI
i /Di =

∑
τi∈τ R

HI
i ≤ m.

where RHI
i and RLO

i denote the execution rate of τHI
i and τLO

i ,
Also, P LO

i denotes the task priority of τLO
i ; the smaller P LO

i ,
the higher the priority. We also define XHI

i = CHI
i /RHI

i and
XLO

i = CLO
i /RLO

i , meaning the execution duration of a job of
τHI
i and τLO

i when the job executes with RHI
i and RLO

i rate,
respectively, to be used in the next subsection.

For given τHI and τLO with subtasks, TL(τ , Fluid, Fluid-
FP) works as follows. Tasks in τHI are scheduled by fluid
scheduling; an active job of τHI

k in τHI performs its execution
with exactly RHI

k rate. On the other hand, tasks in τLO are
scheduled by fluid FP scheduling; an active job of τLO

k in τLO

performs its execution with up to RLO
k rate if there is remaining

processor capacity after executing active jobs of all tasks τHI
i

in τHI and all tasks τLO
i in τLO satisfying P LO

i < P LO
k . Here,

what we mean by “up to RLO
k rate” is as follows. Since τLO

k
reclaims remaining processor capacity, it may not fully execute
with RLO

k rate. For example, suppose that we have one more
task τy with the lowest priority and RLO

y = 2/3 in Fig. 4(a),
and it has an active job in [0, 5). Since other three higher-
priority tasks occupy (1/3+3/5+3/5=23/15) rate in [0, 5),
the remaining rate is only (2−23/15=7/15). Therefore, an
active job of τy executes with 7/15 rate in [0, 5) in spite of
its rate of 2/3.

Let us discuss the constrains C1–C4. C1 is straightforward
because we need to fully execute every job of τi for Ci. C2
is also straightforward as τHI is scheduled by fluid scheduling.
C3 prevents a task τi from occupying more than one processor
at the same time by enforcing RLO

i ≤ 1.0 − RHI
i ; that is, the

summation of execution rates of τLO
i and τHI

i never be larger
than 1 at any time since RLO

i +RHI
i ≤ 1 holds, which prevents a

single task τi from executing in parallel on multiple processors
at the same time. Therefore, the range of RLO

i can be from
CLO

i /Di (similar to fluid scheduling) to 1.0−RHI
i (the largest

rate without occupying more than one processor by τHI
i and

τLO
i ). Finally, C4 should hold by the principle of the proposed

framework in Algo. 1.

Differently from TL(τ , Any, FP), TL(τ , Fluid, Fluid-FP)
allows a task τi to be split into τHI

i and τLO
i . This enables the
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proposed framework to take advantage of existing implicit-
deadline optimal scheduling algorithms as much as possible
because it is possible to achieve δsum(τ

HI) = m while it
is usually impossible without the task split. Note that such
a task split is inherently impossible for TL(τ , Any, FP),
because TL(τ , Any, FP) itself cannot prevent a task from
occupying more than one processor by an implicit-deadline
optimal scheduling algorithm and FP at the same time.

Once TL(τ , Fluid, Fluid-FP) generates a schedule for τ , we
can translate the schedule into a feasible schedule on an actual
system as DP-Wrap does; we call the scheduling algorithm
that generates the feasible schedule on an actual system, TL(τ ,
Fluid, Fluid-FP)-Wrap.

We now present an example how TL(τ , Fluid, Fluid-FP)
works and how TL(τ , Fluid, Fluid-FP)-Wrap translates the
schedule from TL(τ , Fluid, Fluid-FP).

Example 2: Consider a task set τ where τ4(15, 5, 10) is
added from the task set considered in Example 1; all tasks
invoke their jobs periodically from t = 0. Suppose that
CHI

1 =C1=2, CHI
2 =C2=3, CHI

3 =C3=3 and CHI
4 =14/3 (imply-

ing CLO
4 =1/3), meaning that τLO

4 is the only task belonging
to τLO. Also, suppose RLO

4 =1/15. Under TL(τ , Fluid, Fluid-
FP) on a two-processor platform, the schedules of τHI

1 , τHI
2

and τHI
3 in [0, 10) are the same as τ1, τ2 and τ3 in Ex-

ample 1, as shown in Figs. 4(a) and (c). τHI
4 executes in

[0, 10) with RHI
4 = CHI

4 /D4=7/15 rate, and τLO
4 executes in

[5, 10) with RLO
4 =1/15 rate. Then, TL(τ , Fluid, Fluid-FP)-

Wrap partitions [0, 10) into [0, 5), [5, 6) and [6, 10), since
there are job deadlines at t=5 and t=6. In [0, 5), all tasks
other than τ4 exhibit the same schedules as Example 1,
while τ4 occupies the second processor in [8/3, 5) because
it has 7/15·5=7/3 amount of execution. In [5, 6), τHI

1 exhibits
the same schedule of τ1 in Example 1, occupying the first
processor in [5, 16/3). τHI

4 and τLO
4 have 7/15·1=7/15 and

1/15·1=1/15 amount of execution, respectively, in total 8/15
amount of execution, thereby occupying the first processor in
[16/3, 88/15). Similarly, in [6, 10), τHI

4 and τLO
4 occupy the

first processor in [6, 122/15).

As shown in the example, TL(τ , Fluid, Fluid-FP)-Wrap
can translate a schedule feasible on fractional processors gener-
ated by TL(τ , Fluid, Fluid-FP), into a schedule feasible on an
actual system. Therefore, the next subsections focus on TL(τ ,
Fluid, Fluid-FP), and develop its tight schedulability analysis,
and execution rate and task priority assignment policies.

C. Tight schedulability analysis tailored to fluid scheduling

While most (if not all) existing interference-based schedu-
lability tests assume that each task at a time instant either
fully occupies a processor or does not occupy any processor
(e.g., Lemma 2), few studies have addressed how to tightly
analyze the interference under fluid scheduling where each
task occupies a fractional processor. Hence, we develop a new
schedulability test for TL(τ , Fluid, Fluid-FP) by deriving two
conditions corresponding to Eqs. (2) and (3) in Lemma 2, and
explain why our new schedulability test employing the condi-
tions yields significant schedulability improvement compared
to Lemma 2.

The schedulability analysis for TL(τ , Any, FP) calculates
the amount of execution of jobs of τi in an interval of length

ℓ

Fig. 5. Scenario where the cumulative execution length of a task τi is
maximized in a given interval of length � under fluid scheduling.

�, because the amount also implies the cumulative length
of execution. On the other hand, the schedulability analysis
for TL(τ , Fluid, Fluid-FP) needs to calculate the cumulative
length of executions of jobs of τi in an interval of length �. Let
LClass
i (�) denote the maximum cumulative length of execution

of jobs of τClass
i in an interval of length � if τClass

i executes
with exactly RClass

i rate, where Class = {HI, LO}; therefore
each job of τClass

i executes for XClass
i = CClass

i /RClass
i . Fig. 5

describes the scenario for LClass
i (�). Similar to the scenario

of Wi(�), the first job of τi in Fig. 5 begins its execution at
the beginning of the interval of interest, and following jobs are
scheduled as soon as possible. Using the scenario for LClass

i (�),
we derive the upper-bound of LClass

i (�) as follows:

LClass
i (�) =

⌊
�+Di −XClass

i

Ti

⌋
·XClass

i +

min

(
XClass

i , �+Di −XClass
i −

⌊
�+Di −XClass

i

Ti

⌋
· Ti

)
. (4)

Thus, the cumulative length of intervals when jobs of τClass
i

execute in an interval of length � is at most LClass
i (�).

By the definition of LClass
i (�), the amount of execution

of jobs of τClass
i in an interval of length � is upper-bounded

by RClass
i ·LClass

i (�) when τClass
i executes with exactly RClass

i
rate. We then need to show that this property also holds even if
τClass
i executes with a rate lower than RClass

i , which is a useful
property to derive a schedulability condition under TL(τ , Fluid,
Fluid-FP) to be presented in Lemma 5. This is quite trivial
since if τClass

i executes with a rate lower than RClass
i , the

longer � may be required to accommodate the same amount
of execution compared to the case where τClass

i executes with
exactly RClass

i rate. We leave the proof of this property in
Section A of the supplement file [25].

Let Jk denote a job of τLO
k of interest, and t and t +

Dk denote its release time and deadline, respectively. We now
analyze whether Jk finishes its execution within its deadline
under TL(τ , Fluid, Fluid-FP). To this end, we first redefine the
notions of Γ, Enp and Ep of Section IV for fluid scheduling

(denoted by ΓFluid, EFluid
np and EFluid

p , respectively) as follows.
We focus on a set of intervals (not necessarily continuous) over
[t, t +Dk) in which Jk is executed with a rate strictly lower
than RLO

k (or not executed at all) due to execution of jobs of
other higher-priority tasks on more than m−RLO

k processors.
Let ΓFluid denote a subset of the intervals, which limits its
cumulative length to Dk − XLO

k . That is, if the cumulative
length of a set of the intervals is at most Dk − XLO

k , ΓFluid

denotes a set of all the intervals; otherwise, ΓFluid represents
a subset of the intervals, whose cumulative length is exactly

Dk − XLO
k . Then, EFluid

np and EFluid
p are defined as execution

of tasks whose priority is higher than τk in ΓFluid and [t, t +
Dk) \ ΓFluid respectively.
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Fig. 6. Scenario where the cumulative length of ΓFluid is equal to Dk−XLO
k ,

but the amount of higher-priority jobs’ execution performed in ΓFluid is less
than m · (Dk −XLO

k )

Fig. 6 illustrates how the interval of [t, t+Dk) is separated
by the notion of ΓFluid with a scenario where the cumulative
length of ΓFluid is equal to Dk − XLO

k , but the amount of
higher-priority jobs’ execution performed in ΓFluid is less than
m ·(Dk−XLO

k ). As shown in Fig. 6, Jk can execute with RLO
k

rate in [t, t+Dk) \ ΓFluid while Jk executes with a rate lower
than RLO

k or does not execute due to jobs of higher-priority
tasks in ΓFluid.

We can observe from Fig. 6 that Jk never miss its deadline
as long as the amount of execution interfered by jobs of higher-
priority tasks in [t, t + Dk) is no larger than RLO

k · (Dk −
XLO

k ); otherwise, Jk can execute for RLO
k · XLO

k . To judge
schedulability of Jk based on the observation, we consider the
similar reasoning that is used with notions of Enp and Ep in
the previous section as follows. First, the amount of execution

that potentially contributes to EFluid
np should not be larger than

m · (Dk − XLO
k ); otherwise, the amount of execution of Jk

interfered by jobs of higher-priority tasks is larger than RLO
k ·

(Dk−XLO
k ) in [t, t+Dk), thereby missing its deadline. Second,

the summation of execution rates of tasks whose execution
potentially contribute to EFluid

p should be smaller than m −
RLO

k ; otherwise, Jk is not guaranteed to execute with RLO
k rate

in [t, t + Dk) \ ΓFluid, and thus we cannot guarantee that Jk
executes for RLO

k ·XLO
k in [t, t+Dk) \ ΓFluid.

Similar to Lemma 2, we develop our schedulability analysis
for TL(τ , Fluid, Fluid-FP) using two conditions regarding

EFluid
np and EFluid

p that correspond to Eqs. (5) and (6) as follows.

Lemma 5: Suppose that every task τi ∈ τ is split into
τHI
i ∈ τHI and τLO

i ∈ τLO, satisfying C1–C4. Then, τ is
schedulable by TL(τ , Fluid, Fluid-FP) if every τLO

k ∈ τLO

with CLO
k > 0 satisfies the following two conditions Eqs. (5)

and (6).

∑
τi∈τ |P LO

i <P LO
k

RLO
i ·min (LLO

i (Dk), Dk −XLO
k

)
+

∑
τi∈τ

RHI
i ·min

(
LHI
i (Dk), Dk −XLO

k

) ≤ m · (Dk −XLO
k ), (5)

∑
τi∈τ |P LO

i <P LO
k

& LLO
i (Dk)>Dk−XLO

k

RLO
i +

∑
τi∈τ |LHI

i (Dk)>Dk−XLO
k

RHI
i ≤ m−RLO

k . (6)

Proof: Since δsum(τ
HI) ≤ m (i.e., C4) holds under TL(τ ,

Fluid, Fluid-FP), every task τHI
i in τHI is schedulable by

Lemma 1. Then, suppose that a job Jk of a task τLO
k in τLO is

not schedulable even if Eqs. (5) and (6) hold. By the definition

(a) Lemma 2 (b) Lemma 5

Fig. 7. Schedulablity analysis comparison for Example 3: Lemmas 2 and 5
for TL(τ , Any, FP) and TL(τ , Fluid, Fluid-FP), respectively

of ΓFluid, the supposition implies that the length of ΓFluid should
be Dk−XLO

k since Jk is schedulable otherwise. Therefore, we
only consider the case where the length of ΓFluid is Dk−XLO

k .

We prove this lemma by showing contradiction of the
supposition for (Case i) a special case where jobs of higher-
priority tasks execute in ΓFluid as much as possible and (Case
ii) a general case other than Case 1, where some execution
of a higher-priority task τi performed in ΓFluid under Case 1
moves to [t, t+Dk) \ ΓFluid.

(Case i) By the property of Eq. (4), the amount of execution
of τClass

i performed in [t, t+Dk) is upper-bounded by RClass
i ·

LClass
i (Dk). Considering the length of ΓFluid is Dk −XLO

k by
the supposition, the amount of execution of τClass

i performed
in ΓFluid is upper-bounded by RClass

i ·min(LClass
i (Dk), Dk −

XLO
k ). Since execution of each higher-priority task τi is

performed as much as possible in ΓFluid in this case and Eq. (5)
holds, only tasks that hold LClass

i (Dk) > Dk − XLO
k can

contribute to [t, t+Dk)\ΓFluid. Thus, if Eqs. (5) and (6) hold,
Jk never miss its deadline since Jk’ execution is not interfered
at all in [t, t+Dk) \ΓFluid, which contradicts the supposition.

(Case ii) Let α be the space in ΓFluid, occupied by higher-
priority tasks under Case i but not under Case ii. Since Case i
implies the largest possible execution of higher-priority tasks
in ΓFluid, the amount of execution in α should be performed by
Jk unless Jk already executes with RLO

k rate in α or Jk does
not have any remaining execution in α. The former contradicts
the definition of Γ and the latter implies that Jk is schedulable.
Therefore, even if the amount of execution in α moves to
[t, t+Dk)\ΓFluid and it fully prevents Jk’s execution in [t, t+
Dk) \ ΓFluid, Jk can compensate it in ΓFluid. This implies that
Jk executes its full execution in [t, t+Dk), which contradicts
the supposition.

Now, the following example presents how Lemma 5 works.

Example 3: Recall the same task set as Example 2
where τ1 increases its execution time by 1 as fol-
lows: τ1(T1=10, C1=3, Di=6). Suppose that CHI

1 =C1=3,
CHI

2 =C2=3, CHI
3 =C3=3 and CHI

4 =3 (implying CLO
4 =2),

meaning that τLO
4 is the only task in τLO. Also, suppose that

XLO
4 =5. As shown in Fig. 7(a), under TL(τ , Any, FP) on a

two-processor platform, Lemma 2 cannot deem τ schedulable
because the summation of W1(D4), W2(D4) and W3(D4)
(i.e., 11) is larger than m · (D4 − C4) (i.e., 10), meaning the

amount of EFluid
np is larger than that τ4 can accommodate to

avoid deadline miss. On the other hand, under TL(τ , Fluid,
Fluid-FP), Lemma 5 deems τ schedulable, because amount
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of EFluid
np is not larger than m · (Dk−XLO

k ), and the amount of

execution rate satisfying LHI
i (D4) > D4−XLO

4 is smaller than
m−RLO

4 (i.e., 3/10+1/2 < 2−2/5), as shown in Fig. 7(b).

Let us discuss why the schedulability performance of
Lemma 5 is better than that of Lemma 2; recall that the
two lemmas target different scheduling algorithms TL(τ ,
Fluid, Fluid-FP) and TL(τ , Any, FP). First, if we compare
RHI

i · LHI
i (�) (or RLO

i · LLO
i (�)) in Eq. (5) and Wi(�) in

Eq. (2), the former is always no larger than the latter; for
example, if we focus on an interval of length 3 in Example 3,
RHI

2 · LHI
2 (3)=3/5·3=9/5 is smaller than W2(3)=3. Also,

since LHI
i (�) (or LLO

i (�)) is no smaller than Wi(�), the “min”
operation in Eq. (5) reduces the interference more than that
in Eq. (2). Therefore, the LHS of Eq. (5) is always no larger
than that of Eq. (2) even with the same RHS, i.e., XLO

k = Ck.
On the other hands, Eq. (6) is more pessimistic than Eq. (3)
even with XLO

k = Ck, due to the the relationship of LHI
i (�)

(or LLO
i (�)) ≥ Wi(�), which implies that Lemma 5 cannot

dominate Lemma 2. However, Lemma 5 is usually tighter than
Lemma 2, because the advantage of Lemma 5 outperforms the
pessimism of the lemma, to be demonstrated in Section VI.
For better schedulability of TL(τ , Fluid, Fluid-FP), we can
apply both lemmas, because Lemma 2 holds for TL(τ , Fluid,
Fluid-FP)-wrap due to its wrapping algorithm.

D. Necessary conditions for optimal execution rate assignment

In this subsection, we consider a problem of optimal
execution rate assignment under the schedulability test in
Lemma 5, which determines RHI

i and RLO
i for every τi ∈ τ ,

and derive Necessary Conditions for Optimal execution Rate
Assignment (NC-ORA), which is presented in Algo. 3. While
the main idea of NC-ORA is applicable to TL(τ , Fluid, Fluid-
FP) with any valid RLO

i ∈ [CLO
i /Di, 1 − RHI

i ], we focus on
the case where RLO

i is set to CLO
i /Ci for every τLO

i ∈ τLO;
we present how to extend NC-ORA to any valid RLO

i in the
next subsection. Therefore, we now deal with a situation where
RHI

i = CHI
i /Di and RLO

i = CLO
i /Ci (implying XHI

i = Di and
XLO

i = Ci), and focus on the problem of determining RHI
i

(thereby RLO
i ), which is equivalent to determining CHI

i (thereby
CLO

i ). Since the sum of execution rates of tasks in τHI is limited
by m (i.e., δsum(τ

HI) =
∑

τi∈τ C
HI
i /Di =

∑
τi∈τ R

HI
i ≤ m)

under TL(τ , Fluid, Fluid-FP), it is important to effectively
assign execution rate RHI

i of every τHI
i ∈ τHI so as to make τ

schedulable.

In the beginning, NC-ORA investigates a simple condition
for CHI

k . If
∑

τi∈τ\{τk} Ci/Di < m holds for τk, we can

accommodate all tasks other than τk in τHI without any task
split, implying that τHI

k can consume m−∑
τi∈τ\{τk} Ci/Di

execution rate without compromising the accommodation of all
other tasks in τHI. This is addressed in Lines 1–8 in Algo. 3,
where CHI

k is upper-bounded by Ck and CLO
k is set to Ck−CHI

k .

We next derive non-trivial necessary conditions for optimal
execution rate assignment. Suppose that there exists an optimal
execution rate assignment RHI

i for every τHI
i ∈ τHI, such

that τ with the execution rate assignment and some task-
priority assignment for τLO is schedulable by the schedulability
analysis in Lemma 5. We now calculate the largest possible
execution rate of RLO

i of each task τLO
i , assuming i) the

execution rate assignment of other tasks in τHI, which is the

Algorithm 3 NC-ORA(τ )

1: for τk ∈ τ do
2: if

∑
τi∈τ\{τk} Ci/Di < m then

3: CHI
k ← min

(
Ck, Dk ·

(
m−∑

τi∈τ\{τk} Ci/Di

))
;

4: else
5: CHI

k ← 0;
6: end if
7: CLO

k ← Ck − CHI
k ;

8: end for
9: for τ LO

k |CLO
k > 0 ∈ τ LO do

10: if τ LO
k is deemed unschedulable by Lemma 5, with the ex-

ecution rate and priority assignment according to Lemma 6
then

11: Using binary search, find and assign the largest CLO
k which

makes τ LO
k deemed schedulable by Lemma 5, with the exe-

cution rate and priority assignment according to Lemma 6;
12: CHI

k ← Ck − CLO
k ;

13: end if
14: end for

most favorable to τLO
i and ii) τLO

i having the highest priority
among tasks in τLO. This implies that if RLO

i is strictly larger
than the calculated execution rate, τLO

i cannot be schedulable
by Lemma 5, with any execution rate assignment of other tasks
and any priority assignment of τLO

i itself as well as other
tasks. In other words, this calculates the essential execution
rate of τHI

i that should be included in RHI
i in order to make

τLO
i schedulable.

We formally present the most favorable execution rate and
priority assignment for τLO

i to be schedulable by TL(τ , Fluid,
Fluid-FP).

Lemma 6: For given RHI
k = CHI

k /Dk and RLO
k = CLO

k /Ck

(therefore given CHI
k and CLO

k ), consider an execution rate
assignment of RHI

i for every τi ∈ τ \ {τk} as follows. We
first sort every task τi ∈ τ \ {τk} in a non-decreasing order of
LHI
i (Dk). We then sequentially select a task τi from the sorted

list and set RHI
i to Ci/Di until

∑
τi∈τB(τk)

RHI
i ≤ m − RHI

k

holds, where τB(τk) denotes a set of selected tasks. Next,
we select one more task τj from the sorted list and then
set RHI

j to
(
m − RHI

k − ∑
τi∈τB(τk)\{τj} R

HI
i

)
, which yields

∑
τi∈τB(τk)

RHI
i = m − RHI

k . For the remaining tasks τi /∈
τB(τk), we set RHI

i to zero. Since RHI
i for every task τi ∈ τ is

determined, RLO
i can be calculated.

Suppose that Lemma 5 does not deem τLO
k schedulable

when we apply the above execution rate assignment and give
τLO
k the highest task priority among every τLO

i ∈ τLO. Then,
Lemma 5 does not deem τLO

k schedulable with any execution
rate assignment and task priority assignment.

Proof: We show that above execution rate assignment
induces the smallest value for both LHS of Eqs. (5) and (6).

Due to the sorting policy for selecting tasks, we have two
observations for the above execution rate assignment policy.
First, if we add (likewise subtract) ε to RHI

i , the second term
of the LHS of Eq. (5) is increased (likewise decrease) by
ε · min(LHI

i (Dk), Dk − XLO
k ), which depends on LHI

i (Dk).
Second, we cannot find τx ∈ τB(τk) and τy ∈ τ \ τB(τk)
such that LHI

x (Dk) > Dk − XLO
k and LHI

y (Dk) ≤ Dk − XLO
y

hold. Therefore, if we subtract ε to RHI
x for τx ∈ τB(τk) and
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add ε to RHI
y for τy ∈ τ \ τB(τk), we cannot decrease the LHS

of Eqs. (5) and (6), which proves the lemma.

Using Lemma 6, we can judge whether given rate assign-
ment for τk (i.e., given RHI

k and RLO
k ) makes τLO

k schedulable
assuming the most favorable execution rate and task priority
assignment. Therefore, if we find the largest RLO

k that makes
τLO
k schedulable with the assumption, we also find the essential

execution rate of τHI
k ; if RHI

k is less than the essential rate, τLO
k

cannot be schedulable with any execution rate and task priority
assignment. Lines 9–14 in Algo. 3 present how NC-ORA finds
the largest possible value of RLO

k (or equivalently CLO
k ) with

the most favorable situation identified in Lemma 6. That is, if
τLO
k with current CLO

k (therefore RLO
k ) is unschedulable with

the execution rate and task priority assignment in Lemma 6,
we can recalculate the largest CLO

k using binary search. We
can apply such binary search because if Lemma 5 deems τLO

k

schedulable with given RLO
k and the execution rate and task

priority assignment by Lemma 6, then the lemma deems τLO
k

schedulable with a decreased RLO
k and the execution rate and

task priority assignment by Lemma 6. In Sections B and C of
the supplement file [25], we prove that such binary search can
be done without backtracking in Line 11 of Algo. 3 and also
illustrate how NC-ORA works with an example.

We now prove that NC-ORA in Algo. 3 derives necessary
conditions for optimal execution rate assignment with the
following lemma.

Lemma 7: Consider τ is scheduled by TL(τ , Fluid, Fluid-
FP). Suppose that there is an optimal execution rate and
task priority assignment of τ (denoted by X) that is deemed
schedulable by Lemma 5, and we let Y denote an execution
rate assignment by NC-ORA in Algo. 3. Then, (i) RHI

i under X
is no smaller than that under Y for every τHI

i ∈ τHI, implying
that the execution rate assigned by NC-ORA is a necessary
condition for the optimal execution rate assignment. Therefore,
(ii) if δsum(τ

HI) > m under Y holds, τ cannot be deemed
schedulable by Lemma 5 with any execution rate and task
priority assignment.

Proof: As we discussed, if RHI
k is less than the one

assigned by NC-ORA, τLO
k cannot be deemed schedulable by

Lemma 5 with any execution rate and task priority assignment
of other tasks. Therefore, (i) holds. By (i), (ii) trivially holds.

E. Final sub-optimal execution rate and task priority assign-
ment

Now, we decide the execution rate and task priority of every
task using three steps: applying (a part of) OPCA in Algo. 2,
NC-ORA in Algo 3, and heuristic policies for remaining
execution rate and task priority assignment.

We first apply a priority assignment part of OPCA in
Algo. 2 developed for TL(τ , Any, FP). Algo. 2 checks whether
a task with the lowest priority among all unassigned tasks
can be schedulable by Lemma 2. If a task is assigned the
lowest priority by Algo. 2, the task can be schedulable with
any ordering of other higher-priority tasks as long as they are
scheduled on an actual system. Therefore, under TL(τ , Fluid,
Fluid-FP)-Wrap (but not TL(τ , Fluid, Fluid-FP) itself), we
can also guarantee schedulability. Hence, we apply OPCA in
Algo. 2, and find as many as tasks which can be assigned

the lowest priorities. For those tasks, we set CLO
i and CHI

i to
Ci and 0, respectively. This task priority (and execution rate)
assignment is always beneficial to schedulablity, since both
split subtasks (i.e., τHI

i and τLO
i ) of those tasks do not affect

the schedulability of other tasks.

Then, for the remaining tasks, we can apply NC-ORA in
Algo. 3. To improve schedulability, we may consider more
general XLO

k , i.e., XLO
k ∈ [CLO

k /(1 − RHI
i ), Dk] (from C3 in

Section V-B). To this end, we can apply given Z candidates
by linearly chopping the interval [CLO

k /(1 − RHI
i ), Dk]. That

is, when we find the largest CLO
k using binary search in Line

11 of Algo. 3, we can try Z candidates with different value
of XLO

k described above. Such an approach yields a tighter
lower-bound of CHI

i of each task that should be included in
τHI.

After applying OPCA and NC-ORA, the remaining issue
is how to assign execution rate for τHI so as to satisfy
δsum(τ

HI) = m, and how to assign task priorities in τLO.
We consider DM (Deadline Monotonic) [26] and LD (Largest
Density first), which give a higher priority to a task with a
smaller relative deadline Di and a larger Ci/Di, respectively.
If the relative deadline of τk of interest is smaller than a
higher-priority task τHI

i , LHI
i (Dk) is equal to Dk, implying

that τHI
i fully contributes to both Enp and Ep, which is the

worst-case situation. DM can prevent such a situation, by
assigning a higher priority to a task with a smaller relative
deadline. Also, if we consider the schedulability of τLO

i , the
larger Ci/Di implies that we have less choices for XLO

i ,
yielding lower probability to guarantee the schedulability of
τLO
i . Therefore, LD can be a reasonable heuristic. While we

can apply either DM or LD to both execution rate and task
priority assignment, we also consider combinations of DM and
LD, e.g., apply DM to execution rate assignment and LD to
task priority assignment (denoted by DM/LD), or vise versa
(denoted by LD/DM). Such combinations bring a significant
synergy since τk with a shorter relative deadline and a larger
Ck/Dk has both disadvantages we mentioned so far. By giving
a higher priority to such τk, the combinations of DM and
LD significantly improve schedulability of the entire task set.
Section VI will demonstrate effectiveness of DM, LD and
combinations thereof via simulations.

Note that a schedulability test in Lemma 5 does not
dominate that in Lemma 2 (although the former is better than
the latter in most cases), as we discussed in Section V-C.
Therefore, when we check the schedulability of a task set
with the final sub-optimal execution rate and task priority
assignment, we use both lemmas, which slightly improves the
schedulability compared to using Lemma 5 only.

VI. EVALUATION

In this section, we present simulation results to evaluate the
proposed scheduling framework and compare its performance
to existing schedulability tests for implicit-deadline optimal
and heuristic scheduling algorithms.

We randomly generate 100,000 constrained-deadline task
sets for each m ∈ {2, 4, 8, 16}, based on a technique proposed
in [27] used in many studies, e.g., [13, 23]; the detailed
task set generation procedure is described in Section D of
the supplement file [25]. We only take account of task sets
that pass a necessary feasibility condition presented in [28]
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TABLE I. THE NUMBER OF TASK SETS DEEMED SCHEDULABLE BY INDIVIDUAL SCHEDULABILITY TESTS (FOR τ SATISFYING δsum(τ) ≤ m)

m EDF-CF EQDF EDZL LLF EQDZL SPDF FPZL TLAny TLLD
Fluid TLDM

Fluid TLDM/LD
Fluid TLLD/DM

Fluid OPT EX* TL* TL∗
EX∗ (%) FF-DBF

2 27172 41003 46899 49392 50148 49335 51230 55373 55373 55373 55373 55373 55373 51821 55373 106.86% 55373

4 20437 26790 38586 42382 43823 43842 46519 54414 54414 54414 54414 54414 54414 47010 54414 115.75% 54414

8 16951 18703 32881 37609 39124 40561 43766 54756 54756 54756 54756 54756 54756 44360 54756 123.44% 54756

16 15458 14792 29591 34735 35754 38803 42060 54677 54677 54677 54677 54677 54677 42742 54677 127.92% 54677

TABLE II. THE NUMBER OF TASK SETS DEEMED SCHEDULABLE BY INDIVIDUAL SCHEDULABILITY TESTS (FOR τ SATISFYING δsum(τ) > m)

m EDF-CF EQDF EDZL LLF EQDZL SPDF FPZL TLAny TLLD
Fluid TLDM

Fluid TLDM/LD
Fluid TLLD/DM

Fluid OPT EX* TL* TL∗
EX∗ (%) FF-DBF

2 342 4480 6468 8353 10148 12281 13585 11041 20692 23822 22504 25131 0 14231 26686 187.52% 44627

4 6 299 1005 1833 2605 4734 5742 4677 13648 16204 17258 18572 0 5833 20546 352.23% 45586

8 0 4 61 330 355 2361 2942 2584 9126 10944 12702 14160 0 2943 15585 529.56% 45244

16 0 0 3 113 53 1817 2268 2054 6421 7401 9127 11688 0 2268 12390 546.29% 45323
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Fig. 8. The number of task sets deemed schedulable by individual schedulability tests, according to the system density δsum(τ)

(denoted by FF-DBF). Since it has not been identified how
many task sets passing FF-DBF are actually schedulable by
any scheduling algorithm, FF-DBF can be interpreted as a
(probably unachievable) upper-bound of schedulability tests.

For our evaluation, we consider the following schedulabil-
ity tests of different scheduling algorithms.

• TLAny: a schedulability test for TL(τ , Any, FP) em-
ploying OPCA in Algo. 2 in Section IV,

• TLDM
Fluid, TLLD

Fluid, TLDM/LD
Fluid and TLLD/DM

Fluid : schedulability
tests for TL(τ , Fluid, Fluid-FP) applying DM/DM,
LD/LD, DM/LD and LD/DM for assigning remaining
execution rate for τHI and assigning task priorities for
τLO, respectively, after applying OPCA and NC-ORA
described in Section V-E,2

• OPT: a schedulability test of any existing implicit-
deadline optimal scheduling algorithm (i.e.,
δsum(τ) ≤ m),

• EDZL, LLF, EDF-CF, EQDF, EQDZL, SPDF and FPZL:
schedulability tests for EDZL, LLF, EDF-CF, EQDF,
EQDZL, SPDF and FPZL [11–17],3 and

• TL* and EX*: a schedulability test to check whether
a given task set is deemed schedulable by at least
one of the five schedulability tests for the proposed
framework, and that by at least one of the seven
schedulability tests of existing heuristic algorithms.

Tables I and II show the number of task sets deemed
schedulable by individual schedulability tests, among task sets
satisfying δsum(τ) ≤ m (about 55,000 task sets for each m)
and task sets satisfying δsum(τ) > m (about 45,000 task sets
for each m), respectively. Fig. 1 in the introduction and Fig. 8
plot the number of tasks deemed schedulable by individual
schedulability tests, according to the system density δsum(τ).

2For applying NC-ORA, we set B and Z to 10 and 1000, respectively.
3Among some schedulability tests for a single heuristic scheduling algo-

rithm, we choose the best one with polynomial time-complexity.

We first investigate how many additional task sets are
covered by our two-level scheduling framework compared to
the existing implicit-deadline optimal and heuristic schedul-
ing algorithms (i.e., TL* versus OPT and EX*). As seen in
Figs. 8(a) and 8(b), performance of EX* sharply decreases
before a point of δsum(τ) = m, and nearly converges to 0
when δsum(τ) is about 1.25 ·m. That is, EX* covers 86.4%
and 81.0% task sets with δsum(τ) ≤ m, and 12.8% and 6.5%
task sets with δsum(τ) > m for m = 4 and 8, respectively;
these numeric values can be calculated by Tables I and II. Also,
OPT only covers task sets with δsum(τ) ≤ m (shown as the
vertical line in each figure), and does not cover any task sets
with δsum(τ) > m as shown in the tables. Differently from
heuristic and implicit-deadline optimal scheduling algorithms,
TL* not only covers all task sets satisfying δsum(τ) ≤ m,
but also finds from 59.8% to 27.3% schedulable task sets
satisfying δsum(τ) > m for m increasing from 2 to 16, which
are from 87.5% to 446.3% improvement over EX* as shown
in Table II. This demonstrates the proposed framework not
only generalizes existing implicit-deadline optimal scheduling
algorithms but also effectively exploits characteristics thereof.

We now compare our single best schedulability test
TLLD/DM

Fluid , with individual schedulability tests for existing
heuristic algorithms. As shown in Figs. 8(c) and 1 for m = 4
and 8, TLLD/DM

Fluid and individual schedulability tests of existing
heuristic algorithms show the similar trends to TL* and EX*
in Figs. 8(a) and 8(b). As performance of TL* and EX* are
mainly contributed by TLLD/DM

Fluid and FPZL, respectively (as

shown in Tables I and II), TLLD/DM
Fluid significantly outperforms

FPZL, yielding up to 30.0% and 415.3% improvement for task
sets satisfying δsum(τ) ≤ m and δsum(τ) > m, respectively.

We next compare performance of schedulability tests for
the proposed framework. We first check that the four schedu-
lability tests TL—

Fluid surpasses TLAny, which is straightforward.
We now discuss how DM and LD (for assigning remaining
execution rate for τHI and assigning task priorities for τLO)
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influence schedulablity of TL(τ , Fluid, Fluid-FP). Among
four schedulability tests employing DM, LD and combina-
tions thereof, TLLD/DM

Fluid shows the best performance due to
their synergy as we discussed in Section V-E. In particular,
TLLD/DM

Fluid covers from 56.3% to 25.8% of task sets satisfying
δsum(τ) > m as m increases from 2 to 16.

Note that while we discussed constrained-deadline task
sets only, the schedulability results for implicit-deadline task
sets are straightforward. That is, all the five schedulability
tests for the proposed framework cover all task sets with∑

τi∈τ Ci/Ti ≤ m, which is the same as any implicit-deadline
optimal scheduling algorithms.

VII. CONCLUSION AND DISCUSSION

In this paper, we proposed a two-level scheduling frame-
work which takes advantages of both implicit-deadline opti-
mal and heuristic scheduling algorithms. We first presented
a general case how to address three technical issues I1–I3.
We then presented a specific case how to further improve
schedulability by utilizing the characteristics of the specific
case. We demonstrated that the proposed framework not only
outperforms all existing scheduling algorithms in covering
schedulable task sets, but also finds a number of additional
schedulable task sets that have not been proven schedulable
by any existing scheduling algorithm.

While we showed two cases how to exploit the proposed
framework, the potential of the framework is not restricted
to the two cases. The first direction of future work is to
improve schedulability of the framework, entailing not only
selection/development of more proper implicit-deadline op-
timal and heuristic scheduling algorithms that minimize the
interference to tasks in τLO, but also development of a tight
schedulability test for the framework with those scheduling
algorithms. The second direction is to apply the framework
to other settings. For example, while TL(τ , Fluid, Fluid-FP)
and its wrapping algorithm as of now require limited online
information of the upcoming time instant at which any job has
its deadline or release time, we may relax such a constraint
by applying other scheduling algorithms (e.g., P-Fair), which
needs development of its tight schedulability test.
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