2014 IEEE Real-Time Systems Symposium

Time-Reversibility of Schedulability Tests

Jinkyu Lee
Department of Computer Science and Engineering
Sungkyunkwan University (SKKU), Republic of Korea
jinkyu.lee@skku.edu

Abstract—For timing guarantees of a set of real-time tasks
under a target scheduling algorithm, a number of schedulability
tests have been studied. However, there still exist many task sets
that are potentially schedulable by a target scheduling algorithm,
but proven schedulable by none of existing schedulability tests,
especially on a multiprocessor platform. In this paper, we propose
a new notion of time-reversibility of schedulability tests, which
yields tighter schedulability guarantees by viewing real-time
scheduling under a change in the sign of time. To this end, we first
define the notion of a fime-reversed scheduling algorithm against
a target scheduling algorithm; for example, the time-reversed
scheduling algorithm against EDF (Earliest Deadline First) is
LCFS (Last-Come, First-Served), and the converse also holds.
Then, a schedulability test for a scheduling algorithm is said to be
time-reversible with respect to schedulability, if all task sets deemed
schedulable by the test are also schedulable by its time-reversed
scheduling algorithm. To exploit the notion of time-reversibility
for tighter schedulability guarantees, we not only prove time-
reversibility of an existing schedulability test, but also develop
a new time-reversible schedulability test, both of which cover
additional schedulable task sets.

Next, we generalize the time-reversibility theory towards
partial execution. Utilizing the notion, we can assure the schedu-
lability of a task under a target scheduling algorithm in a
divide-and-conquer manner: (i) the first some units of execution
guaranteed by a schedulability test for the scheduling algorithm,
and (ii) the remaining execution guaranteed by a time-reversible
(with respect to partial execution) schedulability test for its
time-reversed scheduling algorithm. Such a divide-and-conquer
approach has not been directly applied to existing schedulability
tests in that they cannot address (ii) effectively. As a case study,
this paper develops RTA (Response-Time Analysis) for LCFS,
proves its time-reversibility, and applies the divide-and-conquer
approach to the test along with an existing EDF schedulability
test. Our simulation results show that the time-reversibility theory
helps to find up to 13.1% additional EDF-schedulable task sets
on a multiprocessor platform.

I. INTRODUCTION

In order to satisfy timing requirements of real-time sys-
tems, scheduling algorithms and their schedulability tests have
been substantially studied. While a scheduling algorithm de-
termines the order of execution of a series of jobs invoked by
a set of real-time recurring tasks, its schedulability test judges
whether all jobs satisfy their timing requirements under any
permissible job release patterns. Since it is often challenging
to develop an exact schedulability test, different sufficient
schedulability tests have been developed for the same schedul-
ing algorithm. That is, a newly-developed schedulability test
covers additional schedulable task sets that are deemed schedu-
lable by none of the existing schedulability tests. For example,
preemptive EDF (Earliest Deadline First) [1], one of the most
popular scheduling algorithms, has a number of schedulability

1052-8725/14 $31.00 © 2014 IEEE
DOI 10.1109/RTSS.2014.18

294

tests on a multiprocessor platform (see a survey [2]). However,
there is still room for tighter schedulability guarantees in
that there exists no known exact schedulability test for many
scheduling algorithms, e.g., preemptive EDF and RM (Rate
Monotonic) [1] on a multiprocessor platform.

While existing studies focus on scheduling of a series of
jobs in a time-ordered manner, we may investigate that under a

change in the sign of time. To this end, we construct a job J;

that corresponds a given job J7 as follows: (i) J; ?’s deadline
is set to J’s release time under a change in the plus-minus

sign, (ii) Ji_q’s release time is set to Jf ’s deadline under a
change in the sign, and (iii) the priority of .J; ¢ is set to that
of JI. Fig. 1 shows an example; since the release time and
deadline of Jf are 10 and 18, respectively, the release time and

deadline of J,i_2 are —18 and —10, respectively. Then, for a
given scheduling algorithm G that prioritizes J7, a scheduling

algorithm that prioritizes J; ? is said to be a time-reversed
scheduling algorithm against G (denoted by (). For example,
since EDF gives the highest priority to a job with the earliest
deadline, a time-reversed scheduling algorithm against EDF
is LCFS (Last-Come, First-Served), which assigns the highest
priority to a job with the latest release time; the converse also

holds.

Then, we investigate a connection between a time-reversed
scheduling algorithm against G (i.e., G) and a schedulability
test for G in terms of schedulability, and define the time-
reversibility as follows: a schedulability test A for a schedul-
ing algorithm G is said to be time-reversible with respect
to schedulability, if all task sets deemed schedulable by Ag
are also schedulable by G. To utilize the notion of time-
reversibility for finding additional task sets schedulable by G,
we identify the following issues to be addressed.

I1. Can we find an existing time-reversible schedulability
test for G?

2. Furthermore, can we develop a new time-reversible
schedulability test for G?

I3. If the answer of Il or 12 is positive, can we demon-

strate that a time-reversible schedulability test A for
G covers additional schedulable task sets, which are
not deemed schedulable by any existing schedulability
test for G?

To address I1-13, we investigate a popular scheduling
algorithm EDF and its time-reversed scheduling algorithm
LCFS on a multiprocessor platform. We prove that a popular
schedulability test, RTA (Response-Time Analysis) for EDF is
not only time-reversible with respect to schedulability, but also

IEEE
computer
® psouety

{f Job release/deadline

1
T

0

P

1 4.2
dz T

t

~

, f; 73

1’/)’/ _
by =
-20 -18
dp -r?

-28

3
-¥;

-10
-d?

1
-F;

-d!

Fig. 1. Jobs under a scheduling algorithm G and the corresponding jobs
under its time-reversed scheduling algorithm G

capable of finding additional task sets schedulable by LCFS,
which addresses 11 and I3. Also, we develop a new time-
reversible schedulability test for LCFS, and demonstrate the
test can cover additional EDF-schedulable task sets that are
deemed schedulable by none of existing schedulability tests
for EDF, which addresses 12 and 13.

While we successfully exploit the notion of time-
reversibility for tighter schedulability guarantees, we can fur-
ther benefit from the notion. To this end, we generalize
the notion of time-reversibility towards partial execution. A
schedulability test for a scheduling algorithm G is said to
be time-reversible with respect to partial execution, if the
following statement holds: if the test guarantees that every
job of a task under GG executes X time units between its
release time and that after ¢ time units, it is guaranteed
that every job of the task under G executes X time units
between its deadline ahead of ¢ time units and the deadline
(see Fig. 3). Then, each job’s execution under G can be
guaranteed by two schedulability tests; a schedulability test
for G guarantees the first some units of execution, and a time-
reversible schedulability test for G guarantees the remaining
execution. As an example, we demonstrate that a collaboration
between RTA for EDF and RTA for LCFS (that is time-
reversible with respect to partial execution) results in covering
additional EDF-schedulable task sets, which are not deemed
schedulable by both schedulability tests.

While such a divide-and-conquer approach is effective in
improving schedulability guarantees, it has not been achieved
without the notion of time-reversibility with respect to partial
execution. This is because, most schedulability tests cannot
guarantee partial execution of a job in an interval between an
arbitrary time instant and its deadline. Motivated by this, we
further improve the schedulability test for EDF, which directly
applies the divide-and-conquer approach without relying on
the notion of time-reversibility.

To demonstrate quantitative schedulability improvement by
the notion of time-reversibility, we generate a large number of
task sets, and count the number of task sets proven schedulable
by our schedulability tests motivated by the notion. The simu-
lation results show that our schedulability tests can find up to
13.1% additional schedulable task sets that are not covered by
the best existing EDF schedulability test on a multiprocessor
platform. Also, a new schedulability test for LCFS covers up

295

to 6.8% additional LCFS-schedulable task sets.
In summary, this papers makes the following contributions:

e Introduction of the notion of time-reversibility for real-

time scheduling,

Establishment of the theoretical foundation of time-
reversibility towards schedulability guarantee im-
provement,

Suggestion of a new direction of schedulability tests,
called a divide-and-conquer approach, which is in-
spired by the notion of time-reversibility,

Application of the time-reversibility theory to preemp-
tive EDF, demonstrating the effectiveness of the notion
in improving schedulability guarantees, and

Demonstration of quantitative improvement
schedulability guarantees via simulation.

on

The rest of this paper is organized as follows. Section II
explains our system model, assumptions, and notations. Sec-
tion III introduces the notion of time-reversibility, and Sec-
tion IV presents how the notion improves schedulability with
a case study. Section V presents more general theory of
time-reversibility, and points out a new direction of devel-
oping schedulability tests. Section VI evaluates schedulability
guarantee improvement by the notion of time-reversibility via
simulations. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

In this paper, we consider a sporadic real-time task
model [3], in which a task 7; € 7 is specified by (T}, C;, D;),
where T; is the minimum separation, C; is the worst-case
execution time, and D; is the relative deadline. We focus on
constrained deadline tasks, which satisfy D; < T;. We assume
a quantum-based time; let the length of a quantum be one
time unit, without loss of generality. All task parameters are
multiples of the quantum.

A task 7; invokes a series of jobs, each separated from its
predecessor by at least 7; time units. Each job of 7;, once
released, should finish its execution within D; time units. The
¢'" job of 7; is denoted by J!, and the release time and
deadline of J{ are denoted by] and df, respectively (where

In this paper, we consider a computing platform consisting
of m identical processors, where m is an integer value. For
the ease of presentation, we will not specify the computing
platform when no ambiguity arises in the rest of the paper.

When it comes to scheduling algorithms, this paper fo-
cuses on preemptive work-conserving scheduling algorithms,
in which a higher-priority job can preempt a lower-priority job
at any time, and any processor cannot be left idle as long as
there is an unfinished job in the system.

III. TIME-REVERSIBILITY

Time-reversibility is a widely-used concept in a stochas-
tic/deterministic process, meaning that properties of interest
hold under a change in the sign of time [4]. Since our

primary interest is schedulability guarantees of a set of real-
time tasks, this section discusses time-reversibility with respect
to schedulability. To this end, we first introduce the notion
of a time-reversed scheduling algorithm. Then, we formally
define time-reversibility of scheduling algorithms as well as
that of schedulability tests. Finally, we bring up technical
issues in order to exploit the notion of time-reversibility for
schedulability guarantees.

A. Time-reversed scheduling algorithms

Suppose that a series of jobs invoked by 7 (denoted by
{J1}r.er) is executed by a scheduling algorithm G. We now
look at {J!};er under a change in the sign of time. To
this end, we synthesize another series of jobs (denoted by
{J; 9}+,er), which is a one-to-one mapping of {J7}, e, as
follows.

RI. The release time of J; ¢ is set to —d!; recall that d}
denotes the deadline of J7.

R2. The deadline of J; 7 is set to —r{; recall that r}
denotes the release time of J7.

R3. The worst-case execution time of .J; ? is set to that of
J1.

R4. The priority of J; ¢ is set to that of J}.

For example, since the release time of J? in Fig. 1 is r2 = 10,

the deadline of .J; 2 (corresponding to J?) is —10. Likewise,
since the deadline of Jf in the same figure is d% = 18, the

release time of Ji_2 is —18.

Note that {J; 7},,c- is also an instance of a series of jobs
invoked by 7 in that it follows all the task parameters of 7.
Then, execution of {.J; ?},,¢, corresponds to that of {J7} <,
reversely in time.! If we pay attention to two scheduling
algorithms that prioritize {J},c, and {J; ?},, e, there is
a relationship between the two, defined as follows.

Definition 1: Suppose that for a given {J/},,c, which is
prioritized by a scheduling algorithm G, {J; /},,c- is gener-
ated according to R1-R4. Then, we can derive a corresponding
scheduling algorithm G, such that G directly assigns job
priorities to {J; ?},,e-. A scheduling algorithm G is said to
be a time-reversed scheduling algorithm against G.

Here we present two examples of G for a given G.

Observation 1: Since J{’s deadline matches J; ?’s release
time under a change in the plus-minus sign, scheduling of
{J1};,e- by EDF (that gives the highest priority to a job with
the earliest deadline) corresponds to that of {J; 7},.c, by a
scheduling algorithm that gives the highest priority to a job
with the latest release time, which is LCFS (Last-Come, First-
Served). In other words, LCFS is a time-reversed scheduling
algorithm against EDF (denoted by EDF = LCES). Similarly,
LCFS = EDF holds.

!Here the meaning of the verb “correspond” is not “be equivalent.” but “be
similar or analogous.”

296

Observation 2: Scheduling of {J!};,c, by RM (likewise

DM) corresponds that of {J; 7}, <, by the same scheduling
algorithm RM (likewise DM), because the priority of a job does
not depend on its release time and deadline. In other words,
RM = RM (likewise DM = DM) holds.

B. Time-reversibility of scheduling algorithms

Since we are interested in schedulability guarantees, we
need to establish a relationship between a scheduling algorithm
G and its time-reversed one G in terms of schedulability, which
is expressed as the notion of time-reversibility as follows.

Definition 2: A scheduling algorithm G is said to be
time-reversible with respect to schedulability, if all task sets
schedulable by G are also schedulable by G.

Then, we can easily decide time-reversibility of existing
scheduling algorithms, as shown in the following observations.

Observation 3: RM and DM are time-reversible with re-
spect to schedulability. This is because, RM = RM and
DM = DM hold as shown in Observation 2.

Observation 4: EDF and LCFS are not time-reversible
with respect to schedulability. This is because, while EDF =
LCFES and LCFS = EDF hold as shown in Observation 1,
we can easily find a task set that is schedulable by LCFS
but unschedulable by EDF (on a multiprocessor platform), and
another task set that is schedulable by EDF but unschedulable
by LCFS.

Once we find a time-reversible scheduling algorithm G
satisfying G # G, the notion of time-reversibility associated
with G helps find task sets schedulable by G. This comes from
the definition of time-reversibility: a task set schedulable by
G is also schedulable by GG. However, it is challenging (if not
impossible) to find a time-reversible scheduling algorithm G
which is different from G. As a result, the notion of time-
reversibility of scheduling algorithms may not be effective
in improving schedulability guarantees. The next subsection
discusses the notion of time-reversibility of schedulability tests
(rather than that of scheduling algorithms), and then Section IV
demonstrates how the notion can improve schedulability guar-
antees with a concrete example.

C. Time-reversibility of schedulability tests

A schedulability test judges whether a task set is schedu-
lable by a scheduling algorithm on a platform. Due to the
challenge of finding exact deadline-miss conditions, only a
few existing schedulability tests are necessary and sufficient,
e.g., the response time analysis for RM (and DM) [5] and the
demand-based schedulability test for EDF [6] on a uniproces-
sor platform, and the schedulability condition for a class of
optimal scheduling algorithms for implicit deadline task sets
on a multiprocessor platform [7-9].

Therefore, there exist many task sets which are potentially
schedulable by a scheduling algorithm, but not proven schedu-
lable by any existing schedulability test for the scheduling al-
gorithm; for example, a number of schedulability tests for EDF
have been developed to cover such potentially schedulable task
sets on a multiprocessor platform [2]. We hope to validate
potentially schedulable task sets (but not proven schedulable

by any existing schedulability test) using time-reversibility of
schedulability tests, defined as follows.

Definition 3: A schedulability test Ag for a scheduling
algorithm G is said to be time-reversible with respect to
schedulability, if all task sets deemed schedulable by Ag are
also schedulable by G.

D. Can time-reversibility improve schedulability guarantees?

While Definition 3 has potential in finding additional task
sets schedulable by G, the potential is achieved only after we
address I11-13 presented in the introduction. This is because,
without addressing I1 and 12, no time-reversible schedulability
test exists, which makes the notion of time-reversibility be in
name only. I3 should be also resolved; otherwise, the notion is
ineffective in covering additional schedulable task sets. Once
we achieve I1 (or 12) and I3, time-reversibility helps achieve
our goal of finding additional task sets schedulable by G,
which is demonstrated in the next section with a case study.

IV. CASE STUDY: RESPONSE-TIME ANALYSIS FOR EDF
AND LCFES

In this section, we demonstrate how the notion of time-
reversibility improves schedulability guarantees. To achieve
this, we address I1-I3, using a case study of a popular
schedulability test for a popular scheduling algorithm and its
time-reversed one: RTA (Response-Time Analysis) for EDF
and LCFS. First, we prove that RTA for EDF is not only time-
reversible, but also able to find additional task sets schedulable
by LCFS. Second, we develop a new schedulability test, RTA
for LCFS, and show that the new time-reversible schedulability
test can cover additional EDF-schedulable task sets.

A. Discovery of an existing time-reversible schedulability test

While there are many existing time-reversible schedulabil-
ity tests, we now present a popular existing schedulability test
framework, called RTA (Response Time Analysis) [5], which
is known to have tight schedulability guarantees and wide
applicability. That is, RTA yields an exact (i.e., sufficient and
necessary) schedulability test for RM (DM) on a uniprocessor
platform [5], and RTA for EDF and that for RM (DM) on a
multiprocessor platform [10, 11] are (one of) the best among
existing schedulability tests in terms of average schedulability
guarantees [2, 11]. In this subsection, we explain RTA for EDF,
and prove its time-reversibility.

The response time of J; is defined as a duration between
its release time and the completion time of its execution. Then,
let J; denote a job of 7; whose response time is the longest
among all jobs invoked by 7;. RTA calculates the response time
of J for every 7, € 7, and deems a task set schedulable if
the response time of J; is no larger than D; for every 7; € 7.

To this end, RTA employs the concept of interference; the
interference of 7; on 7, in [a, b), denoted by Iy ;(a,b), means
the amount of time a job of 73, of interest cannot execute due to
other higher-priority jobs, but jobs of 7; execute in [a, b) [10].
Then, RTA calculates the total interference of other tasks on
Tk in an interval between the release time of J; (i.e., rj;) and
a time instant later than r} (i.e., r; + £). Since a job cannot
execute only when other m higher-priority jobs execute, J;
finishes its full execution in [r}, r;; +¢) if the total interference

297

of other tasks on J; divided by m added to C}, is no larger
than the interval of length ¢, which means the response time of
Jy is no larger than £. Otherwise, we repeat the same process
for a longer interval, which is expressed in Eq. (1) [10].
Ryt!
Ck+ \‘i Z min <I]€<;Z(T;:,T2+R;:),R]:—Ck"-l)J
m
i €r—{7K}
ey

Note that the initial value Ry is set to Cj, and the repetition
halts when R{™' > Dj. (unschedulable) or R{ ™" = R¥ (the
response time no larger than RY).

The remaining issue is to calculate Iy ;(r}, 7} + ¢) under
a target scheduling algorithm, but it is challenging to calculate
the amount of interference exactly. Therefore, existing studies
seek to find upper-bounds of the amount of interference,
especially on a multiprocessor platform. There are in general
two types of upper-bounds. Before explaining the two upper-
bounds, we introduce .5;, which denotes the slack value of
jobs of 7;, meaning the minimum interval length between the
finishing time and the deadline of any job of 7;. In other words,
any job of 7; finishes its execution at least S; time units ahead
of its deadline, and therefore, a job of 7;, Jf cannot be executed
in [d] — S;,d}); see the first job in Fig. 2(a). We will explain
how to calculate S; later in this subsection.

Now we explain the first upper-bound that can be applied
to any work-conserving scheduling algorithm. Since a job can
interfere with another job only when the job executes, the
amount of maximum execution of jobs of 7; can be an upper-
bound of interference of 7; on 7. For a given interval of length
£, the execution of jobs of a task is maximized when the first
job in the interval executes as late as possible and other jobs
in the interval execute as early as possible; also, the beginning
of the interval is a time instant when the first job starts its
execution as shown in Fig. 2(a). Then, we count the number of
jobs of 7; executed in the interval except the last job (denoted
by N;(£)), which is calculated as follows [10].

For example, N;(¢) = 2 in Fig. 2(a). Here, N;(¥) jobs per-
form its full execution in the interval of length ¢, contributing
to N;(¢) - C;. Along with computing the contribution of the

last job, the amount of maximum execution of jobs of 7; in an
interval of length ¢ can be calculated by W;(¢) as follows [10].

{+D; —C; —S;

T @

mw:{

mm:Nmya+man+a—a—&—quq
3)

For the second upper-bound, we use the property of the
target scheduling algorithm. For example, under EDF, a job J}
can interfere with another job J;* only when the deadline of .J/
is no later than that of J;. Since we are interested in J;; whose
interval of interest is [}, d}) of length Dj (from the release
time to the deadline), the amount of time in [r},d}) jobs of
7; can interfere with J;! is upper-bounded by the amount of
execution of jobs of 7; in an interval of length Dy in the
following situation: the deadline of a job of 7; is aligned to the

{f Job release/deadline

. execution
T

. Ti .
E D, : D; 1
i-t- _______ 3 . _______ {.
D-C:S; i C S; C E C;
ri* Interval of interest of length ¢ r'k’ur Y
(2) W;(£)
{f Job release/deadline . execution
. ; . T
D;: : i D; :
!E i Ci Si Ci Si i
", Interval of interest of length D, P
e re + Dy=d,
(b) E;i(Dy)
*f Job release/deadline . execution
. T | T, :
E D; Cod D .

- -
e G e
i, Interval of interest of length ¢ n
e e+l

(©) L;(£)

Fig. 2. Upper-bounds of interference: W;(¢), E;(Dy,) and L;(€)

end of the interval, and all jobs of 7; execute as late as possible
as shown in Fig. 2(b). This is calculated by E;(Dy) [10], where

J T = 52)).

“)

1

Ei(0) = E d

J - C; + max (0, min (Ci,é — \‘?

In summary, we can upper-bound of I} _ (75,7} + ¢) in
Eq. (1) under EDF as follows.

Then, we have two types of RTA for EDF: (a) without
slack reclamation and (b) with slack reclamation [10]. For (a),
S; is statically set to 0 for all 7; € 7, and RTA for EDF
calculates the response time of each task using Eq. (1) with
an upper-bound of Eq. (5).

Suppose that the response time of 7 is Ry by (a). Then, we
know that any job of 73, finishes its execution at least Dy — Ry,
time units ahead of its deadline. Therefore, we update Sy =
Dy — Ry, (if Dy, — Ry, > 0). For (b), RTA for EDF repeats (a)
with updated slack values, until the response time of J;" is no
larger than D; for every 7; € 7 (schedulable) or there is no
more update (unschedulable).

Then, we find out time-reversibility of RTA for EDF
without slack reclamation, as stated in the following lemma.

298

Lemma 1: RTA for EDF without slack reclamation is time-
reversible with respect to schedulability.

Proof: By Definition 3, we need to prove that a task set
is schedulable by LCFS, as long as the task set is deemed
schedulable by RTA for EDF without slack reclamation. To
achieve this, we prove that E;(Dj) with S; = 0 is no larger
than the amount of time in [r},d}) jobs of 7; can interfere
with J;' when the scheduling algorithm is LCFS. Then, it holds
that the actual response time under LCFS is upper-bounded by
the response time calculated by RTA for EDF without slack
reclamation.

Under LCFS, a job of 7; can interfere with another job
Ji only when the release time of the job of 7; is no earlier
than J;. Therefore, the amount of interference of jobs of 7;
on J; is maximized when the release time of the first job of
7; is aligned with that of J;. Then, the scenario that yields
the maximum interference under LCFS shown in Fig. 2(c) is
vertically symmetrical to the scenario of E;(Dy) with S; =0
in Fig. 2(b). This means, jobs of 7; under LCFS interfere with
Ji during at most E;(Dy) with S; = 0, which proves the
lemma. |

As opposed to RTA for EDF without slack reclamation, that
with slack reclamation is not time-reversible with respect to
schedulability. An example is 7 = {7 (T} =4,C1 =3,D; =
4) = 79,73(40,3,40)} on two processors, which are deemed
schedulable by RTA for EDF with slack reclamation, but not
LCFS-schedulable.

Since RTA for EDF without slack reclamation is time-
reversible, the schedulability test can potentially find additional
schedulable task sets that are not deemed schedulable by any
existing schedulability tests for its time-reversed scheduling
algorithm, as discussed in the following lemma.

Lemma 2: RTA for EDF without slack reclamation covers
additional task sets schedulable by LCFS, which are deemed
schedulable by none of existing schedulability tests for LCFS.

Proof: To the best knowledge of the author, no schedula-
bility test specialized for LCFS has been developed. Therefore,
the best existing schedulability test to be applied to LCFES is
the state-of-the-art schedulability test for any work-conserving
(WC) scheduling algorithm. This is RTA for WC with slack
reclamation, which employs W;(¢) as an upper-bound of

We can easily find task sets, which RTA for EDF without
slack reclamation deems schedulable, but RTA for WC with
slack reclamation does not. For example, while RTA for EDF
without slack reclamation deems 7 = {n(Th = 2,C; =
1,D; = 2) T2 = 73} schedulable on a two-processor
platform, RTA for WC with slack reclamation does not. []

In summary, we address I1 and I3, which demonstrates that
the notion of time-reversibility is effective in finding additional
schedulable task sets. In the next subsection, we will address
12 and I3.

B. Development of a new time-reversible schedulability test

Section IV-A presented how the notion of time-reversibility
can improve schedulability guarantees, focusing on an existing
schedulability test as it is. That is, once we discover that

an existing schedulability test Ag for a scheduling algorithm
G is time-reversible, the test can cover additional task sets
schedulable by its time-reversed scheduling algorithm G. This
section utilizes the notion of time-reversibility on the other
way around; we will develop a new time-reversible schedu-
lability test for G' to improve schedulability guarantees for a
scheduling algorithm G.

To this end, we develop a new schedulability test for
LCFES (i.e., RTA for LCFS) and prove its time-reversibility.
Then, we demonstrate that the test can find additional EDF-
schedulable task sets which are not deemed schedulable by any
existing EDF schedulability test including its corresponding
EDF schedulability test (i.e., RTA for EDF).

We already discussed the generic framework of RTA in
Section IV-A, and therefore, the remaining issue is to calculate
an upper-bound of I}, ,(r}, 7} +¢) under LCFS. Under LCFS,
a job JI can interfere with another job J; only when the
release time of Jiq is no earlier than that of J;/. Therefore,
the amount of interference of jobs of 7; on J} in [r}, 7} + ¢)
of length ¢ is maximized when the beginning of the interval
coincides with the release time of the first job of 7; in the
interval and all jobs of 7; in the interval execute as early
as possible, as shown in Fig. 2(c). The amount of maximum
interference of jobs of 7, on J} in [r},r} + ¢) of length ¢ is
calculated by L;(¢) as follows.

J).

|

Then, we can upper-bound of I}, (75,5 + ¢) in Eq. (1)
under LCFS as follows.

iJ - Cy + min <C’i,€— F

L) T; T;

©

Inci(ri, 7 + €) in Bq. (1) < min (W;(£), Li(€)) = Li(€). (7)

We make two observations for the upper-bounds, W;(¥)
and L;(¢). First, L;(¢) is always equal to or smaller than
W;(€); in fact, they are equivalent when the slack value is
the largest (i.e., S; = D; — C;). Second, L;(¥) is irrelevant
to slack values. Therefore, min (W;(¢), L;(¢)) = L;(¢) holds,
and there is the only unified RTA for LCFS in which slack
reclamation is ineffective.

Similar to RTA for EDF without slack reclamation, RTA
for LCFS is also time-reversible, as stated in the following
lemma.

Lemma 3: RTA for LCFS is time-reversible with respect to
schedulability. This means, if a task set is deemed schedulable
by RTA for LCFS, the task set is actually schedulable by EDF.

Proof: We prove that L;(¢) is no larger than the amount
of time in [d} — ¢, d}) jobs of 7; can interfere with J; when
the scheduling algorithm is EDF; then, it holds that any job of
7, under EDF does not miss its deadline as long as RTA for
LCFS guarantees the schedulability of 7.

By definition, L;(¢) in Eq. (6) is equal to E;(¢) with S; = 0
in Eq. (4). Since F;(¢) with S; = 0 is an upper-bound of the
amount of interference of jobs of 7; on J; in [d} —¢, d}) under
EDF, the lemma holds. [|

If we compared the RHS of Eq. (7) with that of Eq. (5), the
difference is E;(Dy) against L;(¢). That is, the upper-bound

299

specialized for EDF focuses on the entire interval of J; (i.e.,
[r, dy) of length D), because the alignment of the deadline
of the last job of 7; and the end of the interval is no longer
valid if the interval of interest ends at an arbitrary time instant
rather than the deadline of J}; (i.e., d}). On the other hand, the
upper-bound specialized for LCFS can handle an interval that
ends at an arbitrary point because a job priority under LCFS
depends solely on its release time, not on its deadline. Then, we
can easily observe that L;(¢) is always (likewise sometimes)
smaller than or equal to E;(Dj,) when the slack reclamation is
not applied (likewise is applied). This means, RTA for LCFS
is capable of covering additional task sets that are deemed
schedulable by neither RTA for EDF without reclamation nor
that with slack reclamation. The following lemma records this.

Lemma 4: RTA for LCFS can find additional EDF-
schedulability task sets, which are not deemed schedulable by
RTA for EDF with slack reclamation (as well as any other
existing EDF schedulability tests).

Proof: Suppose that 7 = {r(Th = 3,C; = 1,D;
3), 70 =73 =74 = (2,1,2)} is scheduled by EDF on a two-
processor platform. Then, 7 is deemed schedulable by RTA for
LCFS, while it is not deemed schedulable by RTA for EDF
with slack reclamation. Note that 7 is not deemed schedulable
by any single existing EDF schedulability test in a survey [2].

|

This is a surprising result, in that RTA for EDF with
slack reclamation is known to exhibit the best average per-
formance of schedulability guarantees among all existing EDF
schedulability tests on a multiprocessor platform [2]. Using the
notion of time-reversibility, RTA for LCFS can find additional
EDF-schedulable task sets, which are not covered by the best
existing schedulability test for EDF, even if they share the same
framework of RTA. In fact, RTA for LCFS finds additional
EDF-schedulable task sets, not covered by any existing EDF
schedulability test. This demonstrates the effectiveness of time-
reversibility in finding additional schedulable task sets.

V. ADVANCED TIME-REVERSIBILITY THEORY

So far, Section III established theory of time-reversibility
with respect to schedulability, and then Section IV presented
how the theory can improve schedulability guarantees. This
section presents more general theory of time-reversibility,
called time-reversibility with respect to partial execution. Us-
ing the notion, we demonstrate how a time-reversible schedu-
lability test A and a (not necessarily time-reversible) schedu-
lability test B create a synergy effect in finding additional
task sets schedulable by G, which are deemed schedulable
by neither Ag nor B. Motivated by this, we also present a
new direction of developing schedulability tests: a divide-and-
conquer approach.

A. Time-reversibility with respect to partial execution

Section III investigated a series of jobs (denoted by

{J; 9}+,er) generated according to R1-R4, which corresponds
to {J{}.,cr prioritized by a scheduling algorithm G. Then,
the notion of time-reversibility describes the schedulability
relationship between a schedulability test for G and the
time-reversed scheduling algorithm against G that prioritizes

{J; "} +,er- Now, we establish a more general relationship

{f Job release/deadline . execution

A guarantees two time
units execution of every J¢
in [r4, rg+4) under G.

!

Two time units execution
of every J;% in [d-4, d9)
under G is guaranteed.

dd

i

}

rd +4

time-reversibility w.r.t
partial execution

4 ﬁ

rid

T

Fig. 3. Time-reversibility of a schedulability test Ag

between the two in terms of partial execution. That is, we
make a connection between a part of execution of a job under
G (guaranteed by a schedulability test for () and that under the
time-reversed scheduling algorithm against G (i.e., G), which
is defined as follows.

Definition 4: A schedulability test Ag for a scheduling
algorithm G is said to be time-reversible with respect to partial

execution, if the following condition holds for every 7; € T,
Cle0,C;], and ¢ € [0, D;]:

e If Ag guarantees that the amount of execution of
every job of 7; under G (denoted by J7) performed
in [r], 7] +£) is Cj, that of every job of 7; under G
(denoted by J; 7) performed in [d; “—¢,d; ?) is equal
to either (a) at least C if the amount of the remaining

execution of J; 7 at d; 9 — ¢ is no smaller than C/ or

(b) the amount of the remaining execution of J; 7 at
d; 7 — ¢ otherwise.

Fig. 3 describes time-reversibility with respect to partial
execution in Definition 4. Suppose that if Ag guarantees that
every job of 7; under G finishes C = 2 time units execution
between its release time and that after £ = 4 time units, every
job of 7; under G finishes at least two time units execution
between its deadline ahead of 4 time units and its deadline
(or all the remaining execution if the amount of the remaining
execution at its deadline ahead of 4 time units is less than
two). If this relationship holds for every 7; € 7, C} € [0, Cy],
and ¢ € [0, D;], Ag is said to be time-reversible with respect
to partial execution. Note that the notion of time-reversibility
with respect to partial execution (i.e., Definition 4) subsumes
that with respect to schedulability (i.e., Definition 3). This is
because, if we set C/ to C; and £ to D; for every 7; € 7, the
former is equivalent to the latter.

While some existing schedulability tests are time-reversible
with respect to partial execution, we prove time-reversibility
of the schedulability test developed in Section IV, as follows.

Lemma 5: RTA for LCES is time-reversible with respect
to partial execution.

Proof: By Definition 4, we need to prove that for every
m € 1, C), € [0,Cy], and £ € [0, Dy], if RTA for LCFS
guarantees that the amount of execution of every job of 7

300

under LCFS (denoted by JY) in [r}, rf +¢) is C}, the amount
of execution of every job of 7; under EDF (denoted by .J, %)
in [d, 7 —¢,d,) is either (a) no smaller than Cj, if the amount
of the remaining execution at d, ¢ — ¢ is no smaller than C}, or
(b) equal to the amount of the remaining execution otherwise.
This is achieved by proving that Ij;(d; — ¢, d;) under EDF

is no larger than the upper-bound of interference under LCFS
(i.e., L;(¢)) for every £ € [0, Dy].

For a job of 7; to interfere with J; in [d} — ¢, d}), the
deadline of the job of 7; is no later than that of JT: Therefore,
the amount of execution of jobs of 7; whose priority is higher
than J}! is maximized when the deadline of the last job of 7; in
the interval is aligned to that of T,’; as shown in Fig. 2(b). Then,
E;(£) can be an upper-bound of the amount. Then, regardless
of the slack value of =; (i.e., S;), E;(¢) < L;(¢) holds for
every £ € [0, Dy].

This implies that as long as RTA for LCFS guarantees C/
amount of execution of every job of 7; in [r{,r{ + ¢) under
LCFS, we can also guarantee C; amount of execution of every

job of 7; in [d, 9 — ¢,d, ?) under EDF. Therefore, the lemma
holds. |

Similar to time-reversibility with respect to schedulability,
RTA for EDF without slack reclamation is also time-reversible
with respect to partial execution, while RTA for EDF with
slack reclamation is not.

B. Synergy of two schedulability tests beyond simple union of
their individual schedulability

According to Definition 4, a time-reversible (with respect
to partial execution) schedulability test Ag can guarantee
the execution of a job under GG in an interval between an
arbitrary time instant and its deadline, which is not effectively
addressed by existing schedulability tests. On the other hand,
some existing schedulability tests can guarantee the execution
of a job under their target scheduling algorithms in an interval
between its release time and an arbitrary time instant. There-
fore, if there exist a time-reversible (with respect to partial
execution) schedulability test Ag and a schedulability test
Bg (regardless of time-reversibility), they cooperate for the
schedulability guarantee of a job under G. That is, the latter
directly guarantees C/ amount of execution performed between
a job’s release time and an arbitrary instant ¢, while the former
indirectly guarantees C; — C/ amount of execution performed
between ¢ and the job’s deadline. Fig. 4 shows an example,
and the following theorem records this.

Theorem 1: Suppose there exist two schedulability tests,
one for a scheduling algorithm G and the other for its time-
reversed scheduling algorithm G (denoted by Ag and Bg), and
Ag is time-reversible with respect to partial execution. Then,
a task set 7 is schedulable by G, if for every 7; € 7, there
exist C/ € [0,C;] and ¢ € [0, D;] such that Ag guarantees that
every job of 7; under G (denoted by J7) finishes its execution
at least as much as C} in [r],r! + ¢) and Bz guarantees that

171
every job of 7; under G (denotedbiJ;q) finishes its execution
; q7 d; ‘- E)
Proof: By Definition 4, A guarantees that every job of

7; under G (denoted by J; %) finishes its execution at least as

at least as much as C; — C/ in [r

{f Job release/deadline . execution

A guarantees two time
units execution of J¢ in
[r4, ra+4) (}éz&
lebed
2,

rd rd +4

Bz guarantees five time
units execution of J;7 in

da

i

A guarantees two time
units execution of J;¢ in

777, d-4) [d:9-4, d79)
- a4 i

rid

Fig. 4. Seven time units execution of .J, i_q under G is guaranteed by two
parts: (a) the first five time units in [r; 7, di_q —4) by Bg directly and (b) the

1

next two time units in [d; Y—4, d; ?) by A associated with time-reversibility
with respect to partial execution.

much as C] in [ﬁ -, ﬁ) (or the amount of the remaining

execution at d; Y — ¢ if it is less than CY). Since By guarantees

~9.d; 7 — 1), the
|

C; — C! amount of execution of J; ¢ in [r
theorem holds.

Using Theorem 1, we immediately develop a new EDF
schedulability test consisting of RTA for LCFS and that for
EDF, as stated in the following lemma.

Lemma 6: A task set 7 is schedulable by EDF, if for every
7; € T, there exist C/ € [0,C;] and ¢ € [0, D;] such that
RTA for LCFS guarantees that every job of 7; under LCFS
(denoted by J7) finishes its execution at least as much as C/ in
[r?,71+¢) and RTA for EDF with slack reclamation guarantees

171

that every job of 7; under EDF (denoted by .J; %) finishes its
c9.d7T—0).

execution at least as much as C; — C} in [r;

Proof: By Lemma 5, RTA for LCFS is time-reversible
with respect to partial execution. Then, the lemma immediately
holds by Theorem 1.]

While partial execution guarantees by RTA for EDF in
Lemma 6 do not necessarily entail the calculation of the slack
value, we may deliberately calculate the slack value for the
slack reclamation, which improves the schedulability guaran-
tees. For the selection of C}, we may try some of choices, or
all choices 0, 1, 2, ..., C; by exploring a tradeoff between time-
complexity and tightness of schedulability guarantees, which
will be discussed in Section VI

Theorem 1 yields significant improvement on schedulabil-
ity guarantees consisting of two parts: (a) partial execution
guarantees of a job in an interval between the release time and
an arbitrary time instant, and (b) that in an interval between
the time instant and the deadline. Such a divide-and-conquer
approach has not been considered by existing approaches
due to non-existence of schedulability tests that realize (b)
effectively, while the notion of time-reversibility successfully
resolves the issue. Motivated by this, the next subsection
addresses (b) directly, yielding a tighter schedulability test than
Lemma 6.

301

C. New direction of developing schedulability tests: a divide-
and-conquer approach

Lemma 6 is successful in finding additional EDF-
schedulable task sets, which are deemed schedulable by neither
RTA for EDF nor RTA for LCFS. However, the lemma cannot
exploit the slack values from the side of RTA for LCFS, since
RTA for LCFS cannot address the slack value of a job under
EDF despite its time-reversibility. Therefore, instead of making
a detour to guarantee partial execution through the notion
of time-reversibility, we directly apply the divide-and-conquer
approach as follows: the first some time units execution is
guaranteed by RTA for EDF with slack reclamation, while the
remaining execution is guaranteed by another EDF schedula-
bility test to be developed inspired by RTA for LCFS. To this
end, we derive an upper-bound on the interference of jobs of
7; on J}; under EDF in an interval between an arbitrary time
instant and J;’s deadline [d} — ¢, d}), as follows.

Lemma 7: Under EDF, the following inequality holds:

Proof: Under EDF, jobs of 7; can interfere with J}; only
when their deadlines are no later than J;’s deadline. Therefore,
the interference of 7; on 7 in [d}; — ¢, d}) is maximized when
the deadline of the last job of 7; is dj, as shown in Fig. 2(b).
Therefore, I, ;(dj — ¢,d;) under EDF is upper-bounded by
E;(0). Also, E;(¢) < W;(¢) holds for every ¢ € [0, D] and
S; € [0, Dz] |]

Then, instead of employing RTA for LCFS to guarantee
partial execution of a job under EDF in an interval between
an arbitrary time instant and its deadline, we directly assure the
partial execution using the above upper-bound. If we compare
the upper-bound of the interference under RTA for LCFS
(Li(£)) and the above upper-bound (FE;(¢)), the inequality
E;(¢) < L;(¢£) always holds, meaning such a direct assurance
yields tighter schedulability guarantees than Lemma 6. The
following lemma presents a tighter EDF schedulability test
than Lemma 6.

Lemma 8: A task set 7 is schedulable by EDF, if for every
T, € T, there exist C}, € [0,C%] and ¢ € [0, Di] such that the
following two inequalities hold:

?<Cp — C;’C-‘r

\‘% Z min (min(Wi(E), Ei(Dy)), £ — (Cr — Cy) + 1>J)
rieT—{mk}

©))

1

Dk—ZSC,’g-&-{— 3 min(Ei(Dk—Z),(Dk—z)—c,g+1)J.

T €r—{7} 0
(10)

Proof: We divide the interval of interest [r}, d}) of length
Dy, into two: [rf, 75 +¢) and [r} +£,d}). Then, we prove that
(a) Cy, — C}, amount of execution is performed in the former
interval, and (b) C}, amount of execution is performed in the
latter interval.

Case (a): A job cannot execute only when there are other
m jobs whose priorities are higher than the job of interest.

Therefore, from Eq. (1), we guarantee Cj, — C}, amount of
execution performed in [r}, v} +¢) of length £, if the following
inequality holds:

1
£<CL—Cl+ b S Leci(riri+ 0,6 (Co = Cp) + 1)J
TiET—{Tr}

Since Iy i(rg, i + ¢) < min (W;(¢), E;(Dy)) holds under
EDF (from Eq. (5)), Eq. (9) implies that we can guarantee
C), — C}, amount of execution performed in [r}, 7} + £).

Case (b): Similar to Eq. (1), we also guarantee C}, amount
of execution performed in [r} + ¢, d}) of length Dy, — ¢, if the
following inequality holds:

1 . * *
Cy + \\E Z min (Ikei(Tk +€,dk)7(Dku)fC,/€+l)J.

T, €ET—{TK}

Since Iy ;(r} +¢,d}) < E;(Dy, — £) holds under EDF (from
Eq. (8)), Eq. (10) implies that we can guarantee C}, amount
of execution performed in [r} + ¢, d};).

The lemma holds by Cases (a) and (b). |

Similar to Lemma 6, we intentionally calculate the slack
values from RTA for EDF with slack reclamation, yielding
tighter schedulability guarantees. Section VI will present the
number of additional EDF-schedulable task sets proven by
Lemma 8.

Inspired by the notion of time-reversibility, we open up
a new direction of developing schedulability tests—a divide-
and-conquer approach, and this entails the development of
schedulability tests that assure a part of execution of a job
between an arbitrary time instant and its deadline.

VI. EVALUATION

In this section, we demonstrate via simulation that the
notion of time-reversibility improves schedulability guarantees.
First, we explain the task set generation procedure. Then, we
present schedulability improvement of EDF as well as that of
LCFS.

A. Task set generation

We generate real-time task sets based on a popular tech-
nique [13], used in a number of multiprocessor scheduling
studies, e.g., [12,14]. There are three input parameters: (a)
the number of processors m (2, 4, 8 or 16), (b) the type
of tasks in each task set (constrained deadline: D; < T;
or implicit deadline: D; = T;), and (c) utilization (C;/T;)
distribution of individual tasks (bimodal with parameter: 0.1,
0.3, 0.5, 0.7 or 0.9, or exponential with parameter: 0.1, 0.3,
0.5, 0.7 or 0.9), detailed in [14]. For each task, 7; is uniformly
chosen in [1,1000], C; is chosen based on the bimodal or
exponential parameter, and D; is uniformly selected in [C;, T;]
for constrained deadline tasks or D; is equal to 7; for implicit
deadline tasks. In compliance with the quantum length, we set
all task parameters to the closest integer values.

For each combination of (a), (b) and (c), we repeat the
following steps, and generate 10,000 task sets. As a result,

302

TABLE L. THE NUMBER OF CONSTRAINED-DEADLINE TASK SETS
PROVEN SCHEDULABLE BY RTA-Wgpr, NEW-Agpr, NEW-Bgpg, AND
NEW-Cepr

The number of schedulable task sets Ratio
NEW-C|
m | RTA-Wepr | NEW-Aepr | NEW-Beor | NEW-Ceor || grawios
2 34450 34637 35287 35406 102.8 %
4 19674 19723 20561 20691 1052 %
8 11948 11967 12922 13071 109.4 %
16 7426 7429 8271 8402 113.1 %

100,000 task sets are generated, for given m (i.e., the number
of processors) and the type of task sets.

1) We generate a set of m + 1 tasks, because a task set
composed of m or less tasks is trivially schedulable.

2) We check whether the generated task set can pass a
necessary feasibility condition in [15].

3) If it fails to pass the feasibility test, we discard the

generated set and return to Step 1. Otherwise, we
include this set for evaluation. This valid task set
serves as a basis for the next new set; we add a new
task into the valid task set, and return to Step 2 with
this new set.

B. Evaluation results

Among all the generated task sets, we compare the number
of task sets proven schedulable by different schedulability tests
for EDF and LCFS on a multiprocessor platform, as follows.

e RTA for any work-conserving algorithm with slack
reclamation that upper-bounds the interference by

W;(€) [10] (denoted by RTA-Wyc);

e RTA for EDF with slack reclamation [10] (denoted by
RTA-Wepr);

e RTA for LCFS developed in this paper (denoted by
RTALcFs).

RTA-Wepe or RTA| cFs, i.e., each task is deemed
schedulable if either the former or the latter deems
the task schedulable (denoted by NEW-Agpg);

Lemma 8 with C} = 0, 0.1-D;, 0.2-D,, ..., C; (denoted
by NEW-BEDF); and

Lemma 8 with C/
Cepp).

Note that each of all the schedulability tests (including
inherently non-EDF tests) can serve as an EDF schedulability
test due to time-reversibility of RTA_ crs and the fact that WC
subsumes EDF (RTA-W). When it comes to LCFS, there are
two schedulability tests: RTA-Wwc and RTA| cps. The former
is the best existing schedulability test for LCFS due to non-
existence of LCFS-specific tests, which will be compared to
the latter.

0,1, 2, ..., C; (denoted by NEW-

Table I shows the number of constrained-deadline task sets
deemed schedulable by individual EDF schedulability tests
on 2, 4, 8 and 16 processor platforms. While RTA-WgpE is
known as the best existing schedulability test for EDF in terms
of tightness of schedulability guarantees, NEW-Agpg covers
some additional task sets which RTA-Wgpr cannot cover. The
additional schedulable task sets, although marginal, entirely

TABLE II. THE NUMBER OF CONSTRAINED-DEADLINE TASK SETS
PROVEN SCHEDULABLE BY RTA-Wyyc AND RTA| cfs
The number of schedulable task sets Ratio
RTA
m | RTA-Wyc RTALcrs RTAHS
2 9088 9705 106.8 %
4 4406 4633 105.2 %
8 2060 2117 102.8 %
16 837 855 102.2 %

come from the notion of time-reversibility. If we directly apply
the divide-and-conquer approach inspired by time-reversibility,
NEW-Bepr and NEW-Cgpg cover up to 11.4% and 13.1%
additional EDF-schedulable task sets, compared to RTA-Wgpg.
The difference between 11.4% and 13.1% arises from the
number of attempts of CJ: 11 values for NEW-Bgpr and all
possible integer values for NEW-Cgpk.

When it comes to LCFS schedulability improvement, we
count the number of constrained-deadline task sets deemed
schedulable by RTA-Wyc and RTA|cps. Table II shows that
the new schedulability test for LCFS, RTA_cfs, finds up
to 6.8% additional LCFS-schedulable task sets that are not
covered by RTA-Wyc, which is an additional contribution of
this paper.

Note that for both EDF and LCFS schedulability tests, the
schedulability trend for implicit-deadline task sets is the same
as that for constrained-deadline task sets.

When it comes to time-complexity, it is known that
RTA without and with slack reclamation requires O(n2 .
max,c. D;) and O(n® - (max;,c. D;)?) computations, re-
spectively [10]. RTALcrs belongs to the former, while RTA-
Wwe, RTA-Wepg, and NEW-Agpr belong to the latter. Due
to the multiple attempts of C}, NEW-Bgpr exhibits 11-O(n?-
(max,, e, D;)?), while NEW-Cgpr exhibits max,,c, C; -
O(n3 - (max,,er Di)2) time-complexity. Since we usually
consider the offline schedulability guarantees, all the schedu-
lability tests are practical in terms of time-complexity.

VII. CONCLUSION

In this paper, we introduced the notion of time-reversibility
for real-time scheduling, and demonstrated how to utilize the
notion for tighter schedulability guarantees. In addition to
quantitative improvement of preemptive EDF schedulability,
this paper pointed out a new direction of developing schedu-
lability tests. That is, we can guarantee the schedulability of a
job in a divide-and-conquer manner using two schedulability
tests, and this calls for the development of schedulability tests
that can assure partial execution of a job in an interval between
an arbitrary time instant and its deadline, which has not been
effectively realized by existing schedulability tests.

While we presented limited examples for the notion of
time-reversibility to improve schedulability guarantees, we
expect that the notion will make a more significant impact on
real-time scheduling. In the future, we would like to exploit the
notion to develop new schedulability tests for other scheduling
algorithms than preemptive EDF. In particular, we have a plan
to investigate how the notion can be effectively applied to non-
preemptive scheduling algorithms. Also, it would be interesting
to study how the notion is adapted for more complex task

303

models, e.g., the mixed-criticality task model [16] and the
synchronous parallel task model [17].

ACKNOWLEDGEMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT & Future
Planning (NRF-2014R1A1A1035827).

REFERENCES
(1

C. Liu and J. Layland, “Scheduling algorithms for multi-programming
in a hard-real-time environment,” Journal of the ACM, vol. 20, no. 1,

pp. 46-61, 1973.

M. Bertogna and S. Baruah, “Tests for global EDF schedulability
analysis,” Journal of systems architecture, vol. 57, no. 5, pp. 487497,
2011.

A. Mok, “Fundamental design problems of distributed systems for the
hard-real-time environment,” Ph.D. dissertation, Massachusetts Institute
of Technology, 1983.

F. P. Kelly, “Networks of queues,” Advances in Applied Probability,
vol. 8, pp. 416-432, 1976.

N. Audsley, A. Burns, M. Richardson, and A. Wellings, “Hard real-
time scheduling: the deadline-monotonic approach,” in Proceedings of
the IEEE Workshop on Real-Time Operating Systems and Software, May
1991, pp. 133-137.

S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling hard-real-
time sporadic tasks on one processor,” in Proceedings of IEEE Real-
Time Systems Symposium (RTSS), 1990, pp. 182-190.

S. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportionate
progress: a notion of fairness in resource allocation,” Algorithmica,
vol. 15, no. 6, pp. 600-625, 1996.

G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, “DP-FAIR: A
simple model for understanding optimal multiprocessor scheduling,” in
Proceedings of Euromicro Conference on Real-Time Systems (ECRTS),
2010, pp. 3-13.

P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt, “RUN: Optimal
multiprocessor real-time scheduling via reduction to uniprocessor,” in
Proceedings of IEEE Real-Time Systems Symposium (RTSS), 2011, pp.
104-115.

M. Bertogna and M. Cirinei, “Response-time analysis for globally
scheduled symmetric multiprocessor platforms,” in Proceedings of IEEE
Real-Time Systems Symposium (RTSS), 2007, pp. 149-160.

N. Guan, W. Yi, Z. Gu, Q. Deng, and G. Yu, “New schedulability test
conditions for non-preemptive scheduling on multiprocessor platforms,”
in Proceedings of IEEE Real-Time Systems Symposium (RTSS), 2008,
pp. 137-146.

M. Bertogna, M. Cirinei, and G. Lipari, “Schedulability analysis of
global scheduling algorithms on multiprocessor platforms,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 20, pp. 553-566, 2009.

T. P. Baker, “Comparison of empirical success rates of global vs. par-
titioned fixed-priority EDF scheduling for hard real-time,” Department
of Computer Science, Florida State University, Tallahassee, Tech. Rep.
TR-050601, 2005.

J. Lee, A. Easwaran, and I. Shin, “Laxity dynamics and LLF schedula-
bility analysis on multiprocessor platforms,” Real-Time Systems, vol. 48,
no. 6, pp. 716-749, 2012.

T. P. Baker and M. Cirinei, “A necessary and sometimes sufficient
condition for the feasibility of sets of sporadic hard-deadline tasks,”
in Proceedings of IEEE Real-Time Systems Symposium (RTSS), 2006,
pp. 178-190.

S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in Proceedings of IEEE
Real-Time Systems Symposium (RTSS), 2007, pp. 239-243.

H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin, “Global
EDF schedulability analysis for synchronous parallel tasks on multicore
platforms,” in Proceedings of Euromicro Conference on Real-Time
Systems (ECRTS), 2013, pp. 25-34.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

